five Mindte review for Week 9.

Question 1. Simplify $\frac{x^{2}-4 x+3}{x^{2}-9}$. (On the quiz in class there was a typo: the numerator read " $x^{2}-4+3$ ".)
Answer 1.

$$
\frac{x^{2}-4 x+3}{x^{2}-9}=\frac{(x-3)(x-1)}{(x-3)(x+3)}=\frac{x-1}{x+3}
$$

Question 2. Simplify $e^{\log 10-\log 5}$.
Answer 2.

$$
e^{\log 10-\log 5}=e^{\log \frac{10}{5}}=e^{\log 2}=2
$$

Question 3. $\left[\begin{array}{l}1 \\ 5\end{array}\right]+\left[\begin{array}{c}7 \\ -3\end{array}\right]=$?
Answer 3.

$$
\left[\begin{array}{l}
1 \\
5
\end{array}\right]+\left[\begin{array}{c}
7 \\
-3
\end{array}\right]=\left[\begin{array}{l}
1+7 \\
5-3
\end{array}\right]=\left[\begin{array}{l}
8 \\
2
\end{array}\right]
$$

Question 4. What is the length of the vector $(1,1,1)$?
Answer 4.

$$
\|(1,1,1)\|=\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3}
$$

Question 5. What is the gradient of the function $f(x, y)=x^{2} y-e^{y}$?
Answer 5.

$$
\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)=\left(2 x y, x^{2}-e^{y}\right)
$$

Question 6. $\frac{d}{d \theta}\left(\log \left(e^{\sin \theta}\right)\right)=$?
Answer 6.

$$
\frac{d}{d \theta}\left(\log \left(e^{\sin \theta}\right)\right)=\frac{d}{d \theta}(\sin \theta)=\cos \theta
$$

Question 7. What is the length of the vector $(2,-1)$?
Answer 7.

$$
\|(2,-1)\|=\sqrt{2^{2}+(-1)^{2}}=\sqrt{4+1}=\sqrt{5}
$$

Question 8. $\frac{d}{d x}\left(\log \left(5^{x}\right)\right)=$?
Answer 8.

$$
\frac{d}{d x}\left(\log \left(5^{x}\right)\right)=\frac{d}{d x}\left(\log \left(e^{x \log 5}\right)\right)=\frac{d}{d x}(x \log 5)=\log 5
$$

Question 9. $\int_{-10}^{1} 0 x^{3} e^{-2|x|^{9}} d x=$?
Answer 9. The integrand is odd, and we are integrating over an interval centred at 0 ; hence the integral is 0.

Question 10. Simplify (and find radius of convergence of) $\sum_{n \geq 0} \frac{t^{n+1}}{n+1}$.
Answer 10.

$$
\sum_{n \geq 0} \frac{t^{n+1}}{n+1}=\sum_{n \geq 0} \int_{0}^{t} s^{n} d s=\int_{0}^{t}\left(\sum_{n \geq 0} s^{n}\right) d s=\int_{0}^{t} \frac{d s}{1-s}=\log (1-t)
$$

The radius of convergence of the series is the same as for the geometric series, i.e. $|t|<1$.

