
NOTES ON VECTORS, PLANES, AND LINES

DAVID BEN MCREYNOLDS

1. Vectors

I assume that the reader is familiar with the basic notion of a vector.
The important feature of the vector is that it has a magnitude and
direction. If v is a vector, say

v = (v1, v2, . . . , vn)

then its magnitude or norm is given by

‖v‖ =
√

v2
1 + v2

2 + · · ·+ v2
n.

There is a natural correspondence between vectors and points. If
you have a point P in n-dimensional Euclidean space, say

P = (P1, P2, . . . , Pn),

then we can associate to P , the vector v given by

v = (P1, P2, . . . , Pn).

We think of the vector v as starting as the origin and ending at the
point P .

Given two points P and Q, we can naturally form a vector v which
starts at P and ends at Q. If

P = (P1, P2, . . . , Pn)

Q = (Q1, Q2, . . . , Qn),

then the vector PQ is given by

PQ = (Q1 − P1, Q2 − P2, . . . , Qn − Pn).

We add and subtract vectors in the natural way. If

v = (v1, v2, . . . , vn)

w = (w1, w2, . . . , wn),
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then we define

v + w = (v1 + w1, v2 + w2, . . . , vn + wn)

v − w = (v1 − w1, v2 − w2, . . . , vn − wn).

Scalar multiplication is also a natural operation. If v is a vector as
above, and λ is a real number, then we define scalar multiplication
by

λv = (λv1, λv2, . . . , λvn).

Here, we are scaling the magnitude of v, but not changing its direction.1

In some cases, the direction of a vector is the feature of interest. When
this is the case, we often scale are vectors as to have magnitude 1. Such
a vector is called a unit vector. If v is as above, then we can form a
unit vector u that points in the direction of v. We define u by

u =
v

‖v‖
.

We leave it as an exercise to verify that u does have norm 1. In fact,
this is a specific case of a more general result. If λ is a real number
and v a vector as above, then

‖λv‖ = |λ| ‖v‖ .

As a consequence of this, if v is a vector, we can find a vector ṽ that
points in the direction of v and has norm λ as follows:

ṽ =
λv

‖v‖
.

Another important operation is the dot product or inner product
of two vectors. With v and w as above, we define the dot product by

v · w = v1w1 + v2w2 + · · ·+ vnwn.

Observe that v · w is a real number and not a vector.
If our vectors are 3-dimensional, then we can define a special opera-

tion called the cross product. If

v = (v1, v2, v3)

w = (w1, w2, w3),

then we define the cross product by

v × w = det

 i j k
v1 v2 v3

w1 w2 w3

 .

1Really we are not changing the 1-dimensional subspace spanned by v. If λ < 0,
we flip v, or reflect v about the origin.
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This idea can be generalized to other spaces of vectors, but we have no
need for this here.

2. Geometry of n-dimensional Space

Now that we have defined some basic operations, we can delve into
some geometric aspects.

First, we introduce a basic idea of angle between vectors. From this,
one can discuss the notions of parallel and orthogonal.

We define the angle between two vectors v and w, denoted by
∠v,w, by

cos ∠v,w =
v · w

‖v‖ ‖w‖
.

This generalizes the idea of angle in the plane. A moments thought
should reveal that we are actually measuring this angle in the plane.
Specifically, we are measuring the angle between v and w in the plane
spanned by v and w. You should verify for 2-dimensional vectors that
this does indeed give you the angle as we know it.

From this, we say that two vectors v and w are parallel if and only
if

cos ∠v,w = ±1.

That is, the angle between v and w is 0 or π.

Exercise 1. Show that v and w, both nonzero vectors, are parallel if
and only if there exists a real number λ such that

λv = w.

The above exercise gives an alternative formulation of parallel which
is useful.

Likewise, we say two vectors v and w are orthogonal if and only if

cos ∠v,w = 0.

An easy consequence of the definition of ∠v,w is that two vectors v and
w which are nonzero are orthogonal if and only if

v · w = 0.

Orthogonality of vectors is useful. Observe that if we have two vec-
tors, v and w, we can write v as a vector parallel to w and a vector
orthogonal to w. For this, we introduce the idea of projection of v onto
w.
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The projection of v onto w is defined by

Projw v = ‖v‖ cos ∠v,w
w

‖w‖
.

This can be simplified by the following computation:

Projw v = ‖v‖ cos ∠v,w
w

‖w‖

= ‖v‖
(

v · w
‖v‖ ‖w‖

)
w

‖w‖

=
v · w
‖w‖2w.

Alternatively, we have

Projw v =
v · w
‖w‖2w.

We call the number
v · w
‖w‖2

the component of v on w. Lastly, let u be the vector that satisfies
the equation

Projw v + u = v.

Exercise 2. Show that u is orthogonal to w. That is

w · u = 0.

Now in 3-dimensional space, if one is given two distinct vectors v
and w, i.e., v and w are not parallel, then we can find a vector u that
completes 3-dimensional space. That is, every vector x can be written
in the form

λ1v + λ2w + λ3u = x.

Now, if we further require that u be orthogonal to v and w, then we are
limited on our choices.2 Luckily for us, we have defined an operation
that will give us such a u. Namely, v × w. Another way to form such
a u is to take a vector u that only satisfies our first condition that v,
w, and u complete 3-dimensional space. Under this condition,

Projv u 6= u

and
Projw u 6= u.

2Think about the geometric picture. There is essentially one direction that u
can point if we insist on the second condition.
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Then we can find vectors u1 and u2 that are orthogonal to v and w.
Then a suitable linear combination of u1 and u2 can be taken as to get
a new vector ũ which is orthogonal to both v and w. Then, since we
can write

u = α1v + α2w + α3ũ,

v, w, and ũ will complete 3-dimensional space.

Exercise 3. Verify that

(a)
v · (v × w) = 0.

(b)
w · (v × w) = 0.

We now give some important properties of the cross product. For
those familiar with the determinant, it should be no great shock that
we can measure areas and volumes using the cross product, since de-
terminants measure these things.3

Let v and w be 3-dimensional vectors. Then the area of the par-
allelogram formed by v and w, denoted by P , is given by

A(P) = ‖v × w‖ .

If we have three vectors v, w, and u, then the volume of the par-
allelepiped formed by u, v, and w, denotes by P , is given by

V (P) = |u · (v × w)| .

3. Lines

As everyone knows, when walking on a line, there are two directions
one can move, forwards and back. Viewing these directions as one
being the negative of the other, you have one degree of freedom on a
line. In 2-space, one equation in the variables x and y of the form

ax + by = c,

determines a line. Solving for y, we get

y = mx + p,

where m is the slope and p the y-intercept. Thinking of p as just a
special point of the line and m as a direction, we see that a line is
determined by a point and a direction. Notice that x is the degree

3Really, eigenvalues measure these things. But the determinant of a matrix is the
product of its eigenvalues. For those familiar with eigenvalues, recall the eigenvalue
measures contraction and expansion in the coordinate directions.
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of freedom, since y is completely determined once we have selected a
particular x.

In higher dimensions, we utilize vectors. If P and Q are points in
n-space, then we can form the line connecting P and Q by extending
the line segment connecting P and Q. As we saw earlier, there is a
natural vector associated to P and Q, and to P . Then the equation of
a line in n-space is the vector valued equation

r(t) = PQt + P ,

where PQ is the vector that starts at P and ends at Q, and P is the
vector that starts at the origin and ends at P . The variable t is our
one degree of freedom. If we expand this in each of the components,
we actually get n− 1 equations. From this, we see that 1-dimensional
objects need n− 1 distinct equations. In general j-dimensional objects
need n− j equations. To summarize,

A Line is determined by a point and a vector.

In 2-space, the Parallel Postulate asserts that two lines either intersect
once or are parallel. In n-space, n > 2, this is not the case. Two
lines need not intersect. However, if two lines intersect, we can define
the angle of intersection. Let `1 and `2 be two lines in n-space which
intersect. Now, from above, we know that

`1 : r1(t) = d1t + p1

`2 : r2(t) = d2t + p2.

Then we define the angle between `1 and `2, denotes by ∠`1,`2 , by

cos ∠`1,`2 =
|d1 · d2|
‖d1‖ ‖d2‖

.

Observe that this is just the angle ∠d1,d2 between the two direction
vectors.

Once we defined the notion of angle, we can again define the notions
of parallel and orthogonal.

Two lines `1 and `2 are parallel if and only if the direction vectors
for the two lines are parallel. That is

∠`1,`2 = ∠d1,d2 = π or 0.

Two lines `1 and `2 are orthogonal if and only if the direction
vectors for the lines are orthogonal. That is

∠`1,`2 = ∠d1,d2 =
π

2
.
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4. Planes

We treat planes only in 3-space for simplicity. Observe that from a
comment above, in n-space, a plane which is a 2-dimensional object
would need n− 2 distinct equations to describe. Then, since

3− 2 = 1,

we see in 3-space, planes should only need 1 equation.
Now, assuming that you cannot jump up and down, and since the

Earth locally looks like a plane, we know when we walk, we have ba-
sically four possible directions. North, South, East, and West. Since
North and South are negatives, and East and West are negatives, we
see that we have 2 degrees of freedom, or two directions.

Given three distinct points, not sitting on the same line (not colin-
ear), then we can form a plane. Now, we know that from three points,
we can form two vectors (North and East). Then every direction you
can move in the plane can be described by moving in these two di-
rections. That is, a point lines in the plane if and only if the vector
you form from this point and any of our first three points should be
expressible as a linear combination of our two direction vectors (North
and East). This gives us one equation. Now, there is an alternative.
Let v and w be our direction vectors forms from the points P , Q, and
R. We saw earlier that there is a unique direction which is orthogonal
to both v and w, and completes 3-space. This vector is given by v×w.
Now, we take any point in the plane, say S, and form the form PS,
then PS is expressible by

PS = λ1v + λ2w.

So that

PS · v × u = 0.

This leads us to the following equation:

(u× v) · (x− P1, y − P2, z − P3) = 0.

We call u× v the normal vector to the plane, and write this as just
n. Then the above becomes

n · (x− P1, y − P2, z − P3) = 0.

Expanding this out, we could solve for x, y, or z, in terms of the other
two. Thus, we have two degrees of freedom. To summarize:

A Plane is determined by a normal vector and a point,
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and

The normal vector is determined by two vectors in the plane.

Now, for planes, something along the lines of the Parallel Postulate
is true. That is, two planes P1 and P2 are either parallel or intersect
in a line.

From this we define the angle between two planes, P1 and P2 of the
form

P1 : n1 · (x− P1, y − P2, z − P3) = 0

P2 : n2 · (x−Q1, y −Q2, z −Q3) = 0,

by

∠P1,P2 =
|n1 · n2|
‖n1‖ ‖n2‖

.

Observe that this is just

∠P1,P2 = ∠n1,n2 .

From this we can again define the notion of parallel and orthogonal.
Two planes P1 and P2 are parallel if and only if

∠P1,P2 = 0 or π.

Two planes P1 and P2 are orthogonal if and only if

∠P1,P2 = 0.

Now that we have defined the idea of lines and planes in 3-space,
we might wonder about the interplay between planes and lines. The
first thing we must introduce is the angle between a plane and a line.
Observe that if we have a line ` and plane P , then they either intersect
at a point or are parallel.

Let ` be a line of the form

` : r(t) = dt + p,

and P be a plane of the form

P : n · (x− P1, y − P2, z − P3).

We define the angle between ` and P , denoted by ∠`,P by

∠`,P =
π

2
− cos−1

(∣∣∣∣ n · d
‖n‖ ‖d‖

∣∣∣∣) .

This is a rather complicated thing. A moments thought will tell you it
must be.

From this we are lead to the following table:
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Geometric Objects Direction Vectors
`1 ‖ `2 d1 ‖ d2

`1 ⊥ `2 d1 ⊥ d2

P1 ‖ P2 n1 ‖ n2

P1 ⊥ P2 n1 ⊥ n2

P ‖ ` n ⊥ d
P ⊥ ` n ‖ d

Observe the reversal in the condition that a plane be parallel to a line
and a plane be orthogonal to a line. This is because of how we define
the plane, via the direction that is orthogonal to the plane. One can
verify the validity of this with a few simple drawings.

5. Getting Geometric Objects From Geometric
Constraints

One of the main problems that arise are problems where we are to
find a geometric object like a line or plane based on geometric condi-
tions. Some conditions are to require that the line or plane be parallel
or orthogonal to a known plane or line. Or that the plane or line con-
tain a certain set of points. The above table can be used to obtain the
vector conditions needed to obtain a vector and a point.

Given some bit of geometric information, the idea is to translate this
into the language of vectors. We do this because the equations for
lines and planes require vectors. Always Remember that a line is
determined by a direction and a point and a plane is determined by
a normal vector and a point. When reading problems, on cannot lose
sight of this goal. Always ask the question, how can I get the direction
or normal vector from this information. When lost, draw a generic
picture of what is going on. Often you are lead to the conditions of the
above table.
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