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Introduction

A C*-algebra is often thought of as the non-commutative generalization
of a C(K)-space, i.e. the space of continuous functions on some locally
compact Hausdorff space, vanishing at infinity. We go one step further, for
we seek to compare the Banach space properties of C'*-algebras and their
naturally complemented subspaces, with those of C'(K)-spaces. (For a recent
survey on C(K) spaces or Banach spaces, see [Ro3].) This involves the
recent theory of operator spaces, or quantized Banach spaces. We briefly
review this concept at the beginning of section 1; the reader is referred
to [ER] and [Pi] for in depth coverage. For the definition of complete
boundedness of maps, complete isomorphisms, etc., see section 1.

Our presentation here is expository; only simple deductions are given,
often from rather deep principles.

Section 1 shows how C*-algebras share certain Banach space properties
of C'(K)-spaces. For example, we state Pfitzner’s theorem that C*-algebras
have Pelczynski’s property (V') as Theorem 1.1, and then deduce that non-
reflexive completely complemented subspaces of C*-algebras contain com-
plete isomorphic copies of ¢y in Corollary 1.2. We then use an old result
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of the author’s to deduce that non-reflexive completely complemented sub-
spaces of von Neumann algebras contain complete isomorphic copies of £°°,
in Corollary 1.3.

We next discuss the important class of nuclear C*-algebras; in many
ways, these are the closest, in Banach space structure, to C(K)-spaces.
These include C*-algebras with separable duals, and more generally, type
I C*-algebras. These are described via Definition 1.5, after which we give
a description of the CAR, or Fermion algebra, a fundamental nuclear non-
type I (separable) C*-algebra. Section one concludes with remarkable re-
sults of Glimm and Kirchberg. In particular, Kirchberg proved the non-
commutative analogue of Milutin’s theorem: Fvery non-type I nuclear sep-
arable C*-algebra is completely isomorphic to the CAR algebra.

Section two deals with quantized versions of the separable extension
property (SEP) for Banach spaces. These were introduced in [Ro2] and
developed further in [OR] and [AR]. Recall that a separable Banach space
has the SEP provided it is complemented in every separable superspace.
Sobczyk established that ¢y has the SEP, and Zippin proved that ¢g is the
only separable space with this property, up to isomorphism. We give a
proof of Sobczyk’s theorem following Theorem 2.7, which motivates the
approach taken in [AR] (and was also given there). This proof uses the
Borsuk extension theorem (Theorem 2.7).

Our first quantized result of the SEP: A separable operator space has the
CSEP provided it is completely complemented in every separable operator
superspace. (This is equivalent to the definition given in Section 2, Defi-
nition 2.2, in virtue of the injectivity of B(H), Theorem 2.3). The spaces
ROW and COLUMN, denoted R and C', are defined following the above
mentioned proof, and then the author’s discovery from [Ro2] (as refined in
[AR]) is given as Theorem 2.12: ¢y(Mp, 00 ® Moo ) has the 2-CSEP for all
n. Of course this implies that co(R @ C) has the CSEP. There follows some
discussion of a possible converse to this, namely the conjecture: a separa-
ble operator space with the CSEP completely embeds in ¢o(R @& C). This
conjecture is at a far deeper level than the results obtained so far.

Unfortunately, K (the space of all compact operators) fails the CSEP,
as discovered by Kirchberg. We give some discussion of an alternate proof,
from [OR], showing that there is a separable operator superspace Y of Kj
with Y/ K, completely isometric to ¢y and Ky completely uncomplemented
in Y (Theorem 2.9). (Kj denotes the cp-sum of M,’s.) T. Oikhberg and
the author succeeded in proving that K has our second quantized version
of the SEP, the CSCP (Theorem 2.12). In virtue of a discovery in [OR],
this property may be formulated: a locally reflexive separable operator space
has the CSCP provided it is completely complemented in every locally reflex-
we separable operator superspace. This suggests the obviously quite deep
problem: if an operator has the CSCP, does it completely embed in K?

The last part of Section 2 deals with the approach taken in [AR], namely
that of fundamental properties of complete M-ideals (see Definition 2.15).
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We do not discuss here the basic new tool used in [AR] for dealing with
these, M -complete approximate identities. Rather, we just show the basic
principles developed in [AR] which lead to Theorems 2.8 and 2.12. Among
these are the lifting result from [AR], stated as Theorem 2.21 here, which
says qualitatively that if J C Y C A with J a nuclear ideal in a C*-
algebra and Y locally reflexive with Y/J separable, then J is completely
complemented in Y .

The proof of Theorem 2.21 in [AR] uses ideas from work of Effros-
Haagerup [ER], where this result is established for Y = A itself. An al-
ternative proof of a pure operator space isometric extension of the latter is
given in the appendix to [AR], and formulated here as Theorem 2.16. The
article concludes with a sketch of the proof that K has the CSCP. Several
open problems are also discussed, in both Sections 1 and 2.

1. C*-algebras from a Banach space perspective

What do C*-algebras look like, as Banach spaces, up to linear home-
omorphism? What do their naturally complemented subspaces look like?
The appropriate way to approach these questions is through the theory of
quantized Banach spaces, or operator spaces, whose natural morphisms are
completely bounded maps. We first briefly recall this concept; for funda-
mental background and references, see [ER] and [Pi].

An operator space X is a complex Banach space which is a closed linear
subspace of B(H), the bounded linear operators on some Hilbert space H,
endowed with its natural tensor product structure with K = K (¢3) (where
K (H) denotes the space of compact operators on H). We let K ®@q, X
denote the closed linear span in B({s ®9 H) of the operators A ® T where
AeK, T e X, and f5 ®9 H is the Hilbert space tensor product of £5 and H.
A linear operator T : X — Y between operator spaces X and Y is called
completely bounded if Ik ® T is a bounded linear operator from K ® X to
K®Y, endowed with their natural norms. Of course, Ik ® T" then uniquely
extends to a bounded linear operator from K ®,, X to K ®,, Y, which we
also denote by Ix ® T'; then we define |T||cp = [Tk @ T||. It now follows
easily that if X;, Y; are operator spaces and T; : X; — Y; are completely
bounded maps, then also 71 ® T is (i.e., extends to) a completely bounded
map from X; Rop Xy to 1h Rop Ys, with HTI & TQHCb < HTIHCbHTQHCb- We
should point out that when X; and X, are C*-algebras, X1 ®q, X2 is also
called the spatial tensor product, and also the minimal tensor product, for
it is the least tensor norm on X; ® Xy whose completion (i.e. X1 ®qp X2) is
a C*-algebra (cf. [Mul] for a proof of this theorem).

Now many natural Banach space concepts naturally extend to the con-
text of operator spaces. Thus operator spaces X and Y are called com-
pletely isomorphic if there exists an invertible linear operator T': X — Y
with T and T—! completely bounded. If ||T||||T e < A, we say X
and Y are A-completely isomorphic; then we set de,(X,Y) = inf{\ > 1:
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X is A-completely isomorphic to Y}. If X C Y with Y an operator space
and X a closed linear subspace, then X is regarded as an operator space
via the natural structure K ®,, X C K ®,, Y. X is then called completely
complemented in Y if there is completely bounded (linear) projection P
mapping Y onto X. If | Plle, < A, we say X is A\-completely complemented
inY;if ||[I — Pllcp < A, we say X is A-completely co-complemented in'Y .

Now of course K may be identified with those infinite matrices repre-
senting compact operators on {5 with respect to its natural basis. For an
operator space X, K ®,, X may also be identified with a Banach space
of infinite matrices with elements in X. Now let Myy denote all infinite
matrices of scalars with only finitely many non-zero entries. Then if M,
denotes the space of n X n matrices of complex numbers, we may regard
MoCcMyC---CM,CMuy41 C---CMypyCK= Moo. It follows easily
that if P, : K — M, in the canonical projection, then

(1.1) P,®Ix — Ik ® Ix in the SOT on K ®q, X

(SOT denotes the Strong Operator Topology). For operator spaces X and
Y and T: X — Y a bounded linear operator, we define ||T||,, by

(1.2) [T |ln = [|Pn & Tl -

(Equivalently, ||T||, = [|I, ® T||, where I, denotes the identity operator
on B(ly) = M,). It then follows easily that 7" is completely bounded iff
(IT||n)52; is bounded, and then

n=1

(1.3) [T = sup|| T -
n

(This easy equivalence is often taken as the definition of complete bounded-
ness, c.f. [ER]). Identifying K ®q, X with infinite matrices, we then have
that a bounded linear operator 7' : X — Y is completely bounded when
(Tx;5) belongs to K®,p Y for all (x;5) in K®ep X, and then (Jx @T)(x45) =
(Tij).-

Evidently, the concept of an operator space X is captured by the Banach
space K ®qp, X. Remarkable axioms of Z. J. Ruan abstractly characterize
this tensor product, without reference to the ambient Hilbert space. For this
and the “correct” notion of duality, as well as various other tensor products
on operator spaces, see [ER], [Pi], and also [BP] for the latter.

Next we recall some basic concepts concerning C*-algebras (see also
standard references such as [Mu] and [Ped]). A (concrete) C*-algebra A
is defined to be a norm closed subalgebra of B(H) (for some H) so that
T € Afor all T € A. Ruan’s axioms have their deep historical precedent
in the abstract axioms given by Gelfand and Naimark, and we make no real
distinction between abstract and concrete C*-algebras. A von-Neumann al-
gebra A is defined to be a unital adjoint-closed subalgebra of B(H) which
is closed in the SOT. Since B(H) is naturally a dual space, with predual C}
(the space of trace class operators on H), it follows that von Neumann alge-
bras are also dual spaces, for they are weak* closed in B(H). A remarkable
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result of Sakai asserts that conversely, any C*-algebra A which is isometric
to a dual space (just as a Banach space) is *-isomorphic to a von Neumann
algebra, and moreover if X and Y are Banach spaces with X* and Y™ iso-
metric to A, then X and Y are isometric; thus von Neumann algebras have
unique preduals, up to isometry.

Standard results show that C*-algebras have a unique operator space
structure. In fact, if Ay, Ay are C*-algebras and T : A; — As is just an
algebraic surjective *-isomorphism, then T is already a complete isometry.
However every infinite dimensional Banach space X has many possible oper-
ator space structures. Two of these are distinguished as being the smallest,
denoted MIN, and the largest, denoted MAX. These are functorially pre-
sented as follows; for any operator spaces X and Y and bounded linear
map T : Y — (X,MIN), T is completely bounded and ||T’|| = ||T||cp; for
any bounded linear map 7' : (X, MAX) — Y, T is completely bounded and
171 = 1T -

We now deal with some fundamental Banach space results for C*algebras.
The first one is due to H. Pfitzner [Pf] (¢y denotes the space of scalar se-
quences tending to 0; £°° the space of all bounded sequences of scalars).

THEOREM 1.1. Let A be a C*-algebra, X a Banach space andT : A — X
a non weakly compact operator. There exists a commutative C*-subalgebra B
of A and a subspace Y of B isometric to co so that T|Y is an isomorphism.

REMARK. The commutative version of this result (i.e. when A itself is
commutative) is due to A. Pelczynski [Pe2].

COROLLARY 1.2. A non-reflexive completely complemented subspace of
a C*-algebra contains a subspace completely isomorphic to cg.

Proor. Let P : A — X be a completely bounded projection onto X,
with A a C*-algebra, X a non-reflexive subspace. Then of course, P is
non-weakly compact. Now choose B and Y as in 1.1, it follows that B must
be endowed with the MIN operator structure. Since P|Y is completely
bounded, P(Y') must also have an operator space structure equivalent to
MIN, whence P|Y is a complete isomorphism and so P(Y') is completely
isomorphic to cy. O

For the next result, recall that a Banach space is isometrically injective
if it is contractively complemented in every superspace. Equivalent formu-
lations and the operator space version will be given in the next section. For
any measure 4 on a measurable space, (L1(u))* is isometrically injective, and
in fact every commutative von Neumann algebra is isometric to such a space
(and p and the measurable space may be chosen with (L1(u))* = L>®(u)).
We now apply this, Theorem 1.1, and a result of the author’s to obtain the
von-Neumann algebra version of the previous result.

COROLLARY 1.3. A non-reflexive completely complemented subspace of
a von Neumann algebra contains a subspace completely isomorphic to £°°.
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PRrROOF. Let P, A, X, B and Y be as in the proof of 1.2, with A a von
Neumann algebra. Let then N'= B”, the double commutant of B, which by
a standard theorem due to von Neumann, equals the von Neumann algebra
generated by B. N is commutative, and hence is isometric to (L1(u))*
for some L1(p)-space. So N is isometrically injective. Since P|N is not
weakly compact, it follows by a result of the author’s [Rol] that there
exists a subspace Z of N with Z isomorphic to £>° and P|Z an isomorphism.
Again, since N has MIN as its operator space structure, P|Z is a complete
isomorphism and so P(Z) is completely isomorphic to . U

REMARKS. 1. Corollaries 1.2 and 1.3 are obtained in [Ro2] as Propo-
sition 2.19, with a somewhat different argument for 1.3. As noted there, it
follows also that 1.2 and 1.3 also hold if one just deletes the term “com-
pletely” in their statements.

2. Unlike the commutative case, a complemented reflexive subspace of
a (C*-algebra may be infinite dimensional. It is a result of G. Pisier that
any such space must be isomorphic to a Hilbert space, (c.f. [R], Theorem
13). This suggests the following problem in the operator space category:
Characterize the Hilbertian operator spaces which are completely isomorphic
to completely complemented subspaces of C*-algebras.

The classical Gelfand-Naimark Theorem asserts that every commuta-
tive C*-algebra is a C'(K) space, i.e. *-isomorphic to the space of continu-
ous functions vanishing at infinity on a locally compact Hausdorff space K.
However, in terms of their Banach space structure, many C*-algebras seem
far removed from C(K) spaces; for example, if H is infinite dimensional,
B(H) fails the approximation property [Sz|, but C'(K) spaces he the metric
approximation property in a natural way. From this perspective, the follow-
ing class of C*-algebras might be viewed as the “correct” non-commutative
version of C'(K') spaces.

DEFINITION 1.4. A C*-algebra A is nuclear provided for every finite
dimensional subspace F' of A and e > 0, there exists a finite rank T : A — A
so that ||Tf — f|| <el|f|l for all f € F, such that there exist n and compete
contractions U : A — M,, andV : M,, — A with T =VU.

We have taken the operator space definition (in fact, this is precisely
how one defines nuclear operator spaces; c.f [EOR]). 1.4 is equivalent to
the original formulation: A is nuclear provided there is exactly one (pre)
C*-norm on A® B for all C*-algebras B. (This equivalence is due to Choi-
Effros and Kirchberg (independently) in the completely positive setting; the
refinement to completely contractive maps as above is due to Smith. For
detailed references, see [W].) Nuclear C*-algebras include the following
family.

DEFINITION 1.5. A C*-algebra A is called type I if every irreducible
x-representative ¢ of A on a Hilbert space H satisfies: K(H) C p(A).
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(Recall that ¢ : A — B(H) is a x-representation if ¢ is an algebraic -
homeomorphism. ¢ is called irreducible if p(A) has no invariant (closed
linear) subspaces other than {0} and H.)

It should be pointed out that infinite dimensional type I C*-algebras are
never type I von Neumann algebras. Of course von Neumann algebras are
also C*-algebras, but their topology is really the weak*-topology. In fact,
an older definition, later proved equivalent: A C* algebra A is type I if
and only if every factor representation of A induces a type I von Neumann
algebra (which must then simply be B(H) for some H). It is also a the-
orem that a type I von Neumann algebra is an £°°-direct sum of algebras
of the form L*°(u,B(H)); where p is a measure with (Lq(p))* = L*(u)
and L (u, B(H)) denotes the bounded p-measurable B(H)-valued (equiv-
alence classes of) functions on the ambient measure space. Now if A is a
C*-algebra, A** is a von Neumann algebra; it is then the case that A is a
type I C*-algebra if and only if A* is a type I von Neumann algebra.

This is, in turn, a special witness to the deep results of Connes [C]
and Choi-Effros [CE2] that a C*-algebra A is nuclear if and only if A** is
injective (as defined in Section 2).

REMARKS. It is a standard result that every C*-subalgebra of a type
I C*-algebra is also type 1. However C*-subalgebras of nuclear C*-algebras
need not be nuclear. Profound work of Kirchberg yields that these coincide
with the class of exact C*-algebras, also introduced by him [Ki2]. It fol-
lows from the definition that nuclear C*-algebras have the Banach metric
approximation property; in fact, their duals also have this property. there
are known natural examples of exact non-nuclear C*-algebras with the met-
ric approximation property, but it is unknown if there exist such algebras
which fail the metric or even the general (unbounded) approximation prop-
erty for Banach spaces. The following question is also open: Suppose A is
a C*-algebra whose dual has the approximation property. Is A nuclear?

The CAR, or Fermion algebra is a fundamental example of a non type
I nuclear C*-algebra. This may be defined as the “infinite” tensor product

gMg of the 2 x 2 matrices. We prefer the following intuitive description.
1

We identify B(¢2) with infinite matrices and define CARy4 to be all T' €
B(¢3) so that there exist an n > 0 and an A € Myn with

A
(1.4) T= A

It follows that 7" is indeed bounded; in fact ||T'|| = || A||. We also define A,
to be all T as in (1.4) with A € Man. Then it follows that CAR, is a unital
x-subalgebra *-isomorphic to Man, with

(1.5) CARg = U A, .

n—
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We now define the CAR algebra A to be the norm-closure of CARy. It
then follows that A acts irreducibly on ¢5, and moreover, A has no non-zero
compact operators, so A is clearly not type I. To see that A is nuclear, for
each n, let i, : Mon — A, be the *-isomorphism given by (1.4), and define
a map 7y : An-i—l — Ay by

A+D 0
T = 1y (2) A+D if
2

A B
T =i,

where A, B,C, D are in Man.

It follows easily that m, is a completely contractive projection mapping
A, +1 onto A,,. But then by (1.5), there exists a unique completely contrac-
tive surjective projection P, : A — A, so that

(1.7) P(T)=my  mpormmT

(1.6)

whenever T' € A, with m > n. Of course then P,z — x for all z € A,
showing A is indeed nuclear.

The CAR algebra, A is quite different from type I C*-algebras. In fact
it follows from the results of [HRS] that if B is a type I C*-algebra, then
A* is not Banach isomorphic (i.e. linearly homeomorphic) to a subspace
of B*, hence A and B are not Banach isomorphic. (Here B* denotes the
Banach space dual of B.) A remarkable result of J. Glimm yields that A is
a universal witness to a C*-algebra being non-type 1.

THEOREM 1.6. [G]; see also Theorem 6.73 of [Ped]) Let A be a non-type
I C*-algebra. Then the CAR algebra is x-isomorphic to a C*-subquotient of
A. That is, there is a C*-subalgebra B of A such that A is x-isomorphic to
a quotient algebra of B.

Now actually, if one applies the refined formulation given in [Ped] and a
lifting theorem due to Choi-Effros [CE1], one obtains (as observed in [Kil])

COROLLARY 1.7. Let A be a separable non-type I C*-algebra. Then the
CAR algebra is completely isometric to a completely contractively comple-
mented subspace of A.

PROOF. According to Theorem 6.73 of [Ped], one may choose ¢q a pro-
jection in A™* and B a C*-subalgebra of A so that ¢ commutes with B, ¢B
is *-isomorphic to A (the CAR algebra), and

(1.8) gB = qAq .

Since ¢B is thus nuclear, by the lifting result in [CE1], there exists a com-
plete contraction L : gB — B so that

(1.9) mL =I5
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where m — ¢B is the quotient map given by mb = ¢b for all b € B. Then
define U : A — ¢B by

(1.10) Ua = qgaq for all a € A.
Finally, define W by
(1.11) W = L(gB) .

Then for all w € W,
LU(w) = L(quq)
(1.12) = L(qw) because ¢ commutes with B
=w by (1.9).

It then follows, since of course U is a complete contraction, that W is com-
pletely isometric to A and W is completely contractively complemented in
A via the projection P = LU. O

It is a famous discovery in Banach space theory, due to A. Milutin [M],
that for any compact metric space K, C(K) is isometric to a contractively
complemented subspace of C(D), where D denotes the Cantor discontin-
uum. Milutin then deduces that if K is uncountable, C(K) is isomorphic
to C(D). E. Kirchberg has established the quantized version of this result,
proving the following converse.

THEOREM 1.8. [Kil] Let A be a separable nuclear C*-algebra. Then A
18 completely isometric to a completely contractively complemented subspace
of the CAR algebra.

A simple application of the operator space version of the Pelczyniski
decomposition method ([Pel]) then yields

COROLLARY 1.9. [Kil] Any separable non-type I nuclear C*-algebra is
completely isomorphic to the CAR-algebra.

PrROOF. For operator spaces X and Y, let X &Y denote: X s
completely isometric to a completely contractively complemented subspace
of Y. Now let D= (A®A® ). Of course D is a nuclear C*-algebra.
Now if B is a separable non-type I nuclear C'*-algebra, then by Corollary 1.7

(1.13) B < D

(since B & A and trivially A & D). But by Corollary 1.7 and Theorem
1.8,

(1.14) DE ASB.

It then follows by the Pelczyniski decomposition method that B is com-
pletely isomorphic to D, whence also D is completely isomorphic to A. [

This leaves the following open question:
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PROBLEM. Classify the separable (infinite-dimensional) type I
C*-algebras to complete isomorphism.

I believe the classification should be the same as the Banach classifica-
tion. However I also believe the answer is far more intricate than the known
commutative case; see [Ro2] for an exposition of the latter.

2. The CSEP and the CSCP

We are concerned here with quantized versions of the Separable Exten-
sion Property for Banach spaces, which is defined as follows.

DEFINITION 2.1. A Banach space Z has the Separable Ezxtension Prop-
erty (SEP) provided for all separable Banach spaces X C'Y and bounded lin-
ear operators T : X — Z, there exists a bounded linear operator T:Y —Z
extending T'. That is, we have the diagram

Y  ~
T
U\
(2.1) x— L.y

If A > 1 is such that T can always be chosen with ||T| < \||T)||, we say that
Z has the \-SEP.

Our first quantized version of the SEP goes as follows.

DEFINITION 2.2. An operator space Z has the Complete Separable Exten-
sion Property (the CSEP) provided for all separable operator spaces X C'Y
and completely bounded T : X — Z, there exists a completely bounded
T :Y — Z extending T. That is. we have that (2.1) holds for completely
bounded maps. Again, if T can always be chosen with | Tl < M|T|es, we
say that Z has the \-CSEP.

It turns out that if Z has the CSEP, then Z has the A-CSEP for some
A, and of course a similar statement holds for the SEP itself. We are mainly
interested in the case of separable Z. Sobczyk proved in 1941 that ¢ has the
2-SEP and 2 is best possible here [Sob]; in fact, if Z is infinite-dimensional
separable with the A-SEP, then A > 2. Zippin proved in 1977 the far deeper
converse; every infinite dimensional separable Banach space with the SEP is
isomorphic to co [Z].

We first give a proof of Sobczyk’s theorem which motivates the approach
to the quantized versions of the SEP given in [AR]. We recall that a Banach
space Z is called isomorphically injective if for all Banach spaces X C Y
and operators T : X — Z, there exists a T satisfying (2.1). If we require
also that we can choose T with ||T'|| = ||T||, we say that Z is isometrically
injective. Similarly, an operator space Z is called isomorphically injective if
for all operator spaces X C Y and completely bounded 7" : X — Y, there
is a completely bounded T satisfying (2.1); if again we require that 7' can
be chosen with ||T|ep = | T, Z is called isometrically injective. (In the
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literature, isometrically injective operator spaces are just termed injective.)
It is easily seen, from the Hahn-Banach theorem, that ¢ is isometrically
injective. The non-commutative version of this is true (throughout, we use
complex scalars).

THEOREM 2.3. B(H) is an isometrically injective operator space, for
any Hilbert space H.

This was proved for the case of completely positive maps and self-adjoint
operator spaces in the domain by Arveson [A], and later in general by
Paulsen (cf. [Pa]) and Wittstock [Wi]. It follows from 2.3 that a separable
operator space has the CSEP if and only if it is completely complemented
in every separable operator superspace. Similarly, an operator space is iso-
morphically injective if and only if it is completely complemented in every
operator superspace.

The following result is an immediate consequence of Corollaries 1.2 and
1.3.

COROLLARY 2.4. Let X be a non-reflexive operator space. If X is sepa-
rable with the CSEP, X contains a subspace completely isomorphic to cy. If

X is isomorphically injective, X contains a subspace completely isomorphic
to £°°.

It is known that a Banach space is isometrically injective if and only
if it is isometric to C(€2) for some extremely disconnected compact Haus-
dorff space 2. It is a famous open problem if every isomorphically injective
Banach space is isomorphic to an isometrically injective one. Similarly, we
have the quantized version: Is every isomorphically injective operator space
completely isomorphic to an isometrically injective operator space?

We next deal with the proof of Sobczyk’s theorem, which motivates
the approach to the quantized versions given in [AR]. We first formulate
complementation in terms of lifts.

DEFINITION 2.5. Let X C Y be Banach (resp. operator) spaces and let

m:Y — Y/X be the quotient map. A bounded linear map L :Y/X — Y is
a lift of Iy,x if Iy;x = wL. That is, the following diagram holds:

Y
L ™

Then it is easily seen that X is complemented in Y if and only if Iy, x
admits a lift. In fact, we have the following simple result.
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PROPOSITION 2.6. Let X C Y be Banach (resp. operator) spaces, and
let A\ > 1. Then X is A-co-complemented in Y (resp. A-completely co-
complemented in 'Y ) if and only if Iy,x admits a lift L with

(2.3) ILIF <A (resp. ||Ll[co < A).

PROOF. Suppose L satisfies (2.2). Then setting Q = Lm, we easily
verify that @ is a projection on Y with kernel equal to X, and of course
QI < ||IL|| (resp. ||Qllcb < ||L||eb). Conversely, if @ : Y — Y is a bounded
linear projection with X = Ker @, let W = Q(Y). It follows easily that «|IW
maps W onto Y/X and

(2.4) ||rw|| > ||QH [|w]| for all w e W.
Then L = (7|W)~! is the desired lift; moreover in the completely bounded
setting, [|Lleb < [|@llcb- U

Next we recall a classical theorem of Borsuk [B], which asserts that if K
is a compact metrizable subset of a compact Hausdorff space €2, then there
is a linear operator L : C(K) — C(Q2) of norm one so that (Lf)|K = f
for all f € K. This may be reformulated in the language of C*-algebras as
follows.

THEOREM 2.7. Let A be a unital commutative C*-algebra and J be a
(closed) ideal in A so that A|J is separable. Then there exists a contractive

lift AT — A of L.

PROOF. By the Gelfand-Naimark theorem, A is x-isometric to C(12)
for some compact Hausdorff space €2, and moreover, if we just assume
A = C(Q), then for some closed subset K of Q, J = {f € A: f(k) =
0 for all k € K'}. A|J is separable if and only if K is metrizable; thus 2.6 is
just a reformulation of Borsuk’s theorem. O

Now we give a

PRrROOF OF SOBCzZYK’S THEOREM. We first note that ¢y is an ideal in
£°°) which can be regarded as a C*-algebra. Let then X C Y be separable
Banach spaces and T : X — c¢g be a given operator. Since £ is isometrically
injective, we may choose T : Y — £ extending T with ||T|| = ||T’||. Let A be
the (commutative) C*-subalgebra of (> generated by ¢y and T'(Y'). Then of
course ¢ is an ideal in A also, and hence is co-contractively complemented in
A by Theorem 2.7 and Proposition 2.6; that is, we may choose a projection
P: A — ¢y with || — P|| = 1; hence ||P|| < 2. But then letting S = PT, S
is an extension of 7' to Y, and ||S|| < 2. Thus ¢y has the 2-SEP. O

The remainder of this section deals with quantized versions of this ar-
gument. Before going into this, we note that it is an open question if the
conclusion of Theorem 2.7 holds if we drop the assumption that A is com-
mutative. In fact, it is open, if every ideal of a separable C*-algebra A
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is complemented in A; i.e. if there exists a bounded linear lift L of Ta)7.
Deep work of Ando [A] yields that the answer is affirmative, however if
A/J has the bounded approximation property; in particular, if A/J has
the metric approximation property then I 4,7 admits a contractive lift. An
important special case of this problem: let Y be a separable subspace of
B(l3) containing K. Is K complemented in Y ¢ Trivially we may assume
Y is a C*-algebra, by just replacing Y by its generated C*-algebra. An ap-
proach to a possible positive resolution to this is given in [AR]. The author
now guesses, however, this last problem has a negative answer. (A further
complement to this problem is given by Proposition 2.20 below.)

We now summarize the main known results on separable spaces with
the CSEP. Let R (resp. C) denote the ROW (resp. COLUMN) operator
space. Identifying B(¢2) with infinite matrices, R is simply all such matrices
with non-zero entries only in the first row. Similarly, C' is all matrices with
non-zero entries only in the first column. It is easily seen that R and C' are
isometric to f2; their matrix representation inside B({2) determines their
operator space structure. More generally, if 1 < j, k, < oo, M} denotes all
operators in B({2) whose matrices have non-zero entries only in their first j
rows and k columns. Thus M o = B({2), M1 = R, My = C.

If X, Y are operator spaces, X @& Y denotes their £*° direct sum. If
X1, Xa,... are given operator spaces, (X1 @ Xo @ -+ )., denotes their cg-
direct sum; i.e. the Banach space of all sequences (z,,) with z,, € X, for all
n and ||z,| — 0; (X1 & X2 @ -+ )po denotes their ¢>°-direct sum. Both of
these spaces are just endowed with the corresponding ¢°*°-direct sum operator
structures. Finally, we denote (X®X @+ )¢, by co(X) and (X SX DB+ )poo
by ¢>°(X). The following is the main “positive” result on the CSEP.

THEOREM 2.8. For alln > 1, co(My,00 @ Mson) has the 2-CSEP.

(This is established in [Ro2] with “2+¢”in place of “2”, ¢ > 0 arbitrary.
The refinement eliminating € > 0 is given in [AR].)

Now for each n < 00, ¢o(M,0) is completely isomorphic to ¢o(R) and
co(Mso,n) is completely isomorphic to c¢o(C); however, just the Banach-
Mazur distance itself of co(R) to co(Mp o) leads to infinity; i.e. d(co(¢2),
co(My,00)) — 00 as n — oo. Thus it appears surprising that the A-CSEP
constant in 2.8 is best possible, namely A = 2.

CONJECTURE. Let X be a separable operator space with the CSEP. Then
X is completely isomorphic to a subspace of co(R @ C).

Of course any completely complemented subspace of ¢o(R @ C') has the
CSEP; naturally this includes ¢ itself. See Conjecture 4.6 of [Ro2] for a
list of 21 completely complemented operator subspaces of ¢y(R @ C'), which
could conceivably be the entire family of separable infinite-dimensional ones
with the CSEP.

Now R @ C itself is isometrically injective (as an operator space), so has
the CSEP. As shown in Proposition 22 of [Ro2], any reflexive operator space
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with the CSEP is isomorphically injective. A problem thus related to the
above conjecture: is every separable (infinite-dimensional) isomorphically
injective operator space completely isomorphic to R, C or R® C? The
problem has been answered affirmatively by Robertson in case the operator
space is actually isometrically injective [R].

Of course, M), oo ® M is completely isometric to a subspace of K
for all n. However K itself fails the CSEP. This result is due to Kirchberg
[Ki2]. In fact, he obtains that Ky fails the CSEP, where

(2.5) Ko=(Mi®Me®--- DMy ® -+ )g -

Here, we regard K as a C*-algebra; notice that Ky is an ideal in the “finite”
von Neumann algebra N = (M7 & Ma @ -+ ) 0.

A new proof that Ky fails the CSEP is given in [OR], via the following
result (See Corollary 4.9 of [OR]).

THEOREM 2.9. There exists an operator space Y containing Kg so that
Y/Ky is completely isometric to ¢y and Kg is completely uncomplemented
mY.

The particular construction in [OR] yields that Ky is Banach cocon-
tractively complemented in Y The same holds for Kirchberg’s construction
mentioned above; hence these results cannot resolve the complemented ideal
problem mentioned earlier. (Actually we show later that this is a conse-
quence of a general principle; see Proposition 2.20.)

Is there a quantized version of the SEP which K satisfies? For K is often
thought of as quantized c¢y. There is indeed; the “culprit” in the counter
example Y of 2.9: Y fails to be locally reflexive as an operator space.

DEFINITION 2.10. An operator space X is called locally reflexive if there
is a A > 1 that for all € > 0 and finite dimensional subspaces F' and G of
X* and X** respectively, there exists a linear operator T : G — X satisfying

(2.6) (Tg, f)={g,f) forallginG and f € F
and
(2.7) IT)co < A+e.

If X works, X is called A-locally reflexive.

If X is any Banach space, then X is 1-locally reflexive and hence (X, MIN)
is 1-locally reflexive. Remarkable permanence properties yield that if X is A-
locally reflexive, so is any subspace (cf. [ER], [Pi]). A C*-algebra is either
1-locally reflexive or non-locally reflexive [EH]. Nuclear C*-algebras are
locally reflexive, but for example B(H) is not (for H infinite-dimensional).

As noted above, a separable operator space has the CSEP provided it is
completely complemented in every separable operator superspace.

DEFINITION 2.11. A separable locally reflexive operator space Z has the
Complete Separable Complementation Property (the CSCP) provided every
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complete isomorph of Z is completely complemented in every separable lo-
cally reflexive operator superspace. FEquivalently, given X C Y separable
locally reflexive operator spaces and T : X — Z a complete surjective homo-
morphism, there exists a completely bounded T satisfying (2.1).

This concept was introduced in [Ro2], where it was established that K
has the CSCP. Subsequently, T. Oikhberg and the author jointly established
the following result.

THEOREM 2.12. [OR] K has the CSCP.

Now it follows that then every completely complemented subspace of K
has the CSCP. An affirmative answer to the following would extend Zipp-
man’s result [Z].

CONJECTURE. FEvery operator space with the CSCP is completely iso-
morphic to a subspace of K.

For a possible list of all primary completely complemented subspaces
of K, see Conjecture 4.10 of [Ro2]. There are 11 such candidates. Taking
direct sums of these yields a finite (up to complete isomorphism) family of
operator spaces which could conceivably be the list of all operator spaces
with the CSCP. Such a result, if true, would involve many deep new ideas.

The following equivalences for the CSCP are established in [OR].

THEOREM 2.13. Let X be a separable locally reflexive operator space.
Then the following are equivalent

(a) X has the CSCP.

(b) X is completely complemented in every separable locally reflexive
superspace.

(¢) Assuming X C B(H), then X is completely complemented in'Y" for
all separable locally reflexive Y with X C'Y C B(H).

Let us note that it is false that spaces Z with the CSCP enjoy the
extension property given in (2.1) for completely bounded maps, even if Y
is separable locally reflexive. Indeed it is established in [OR] that if Y =
C (the trace class operators) and for all X C'Y and completely bounded
T : X — Z, there is a completely bounded T : Y — Z satisfying (2.1), then
Z has the CSEP. However, spaces with the CSCP do satisfy a form of this
principle (Theorem 1.6(d) of [OR]).

PROPOSITION 2.14. Let Z have the CSCP and X C Y be separable
locally reflexive such that X is locally complemented in Y. Then for every

completely bounded T' : X — Z, there is a completely bounded T:Y - Z
extending T' (i.e., so that (2.1) holds).

Recall that if X and Y are operator spaces, with X C Y, then X is called
locally complemented in Y if there is a C' < oo so that X is C-completely
complemented in Z for all X C Z C Y with Z/X finite dimensional. It is
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proved in [Ro2] that if Y is locally reflexive, then X is locally complemented
in Y if and only if X** is completely complemented in Y**.

As noted above, there exist completely bounded operators from sub-
spaces of C; into K with no completely bounded extensions. However the
following problem may have an affirmative answer.

PROBLEM. Let A be a separable nuclear C*-algebra, X a subspace, and
T : X — K be a completely bounded map. Does there exist a completely
bounded extension T : A — K?

We finally sketch a route throough Theorems 2.8 and 2.12, following the
approach in [AR]. The following concept is fundamental.

DEFINITION 2.15. Let X C Y be Banach/operator spaces.

(a) X is called an M-summand in Y if there exists a closed linear
subspace Z of Y with X & Z =Y so that

(2.8) |z + z|| = max{||z|, ||z||} forallze X and z € Z.

In the operator space case, X is called a complete M-summand if
Z can also be chosen so that

(2.9) 1(ij + 2i5) || = max{[| (i), [1(zi;) 11}
for all n and n x n matrices (z;5) and (2j), of elements of X and
Z respectively.
(b) X is called an M-ideal (resp. complete M-ideal) in Y if X** =
X+t is an M-summand (resp. complete M -summand) in Y**.

It is a remarkable theorem that if A is a C*-algebra and X C A, then X
is an M-ideal iff X is an algebraic (closed 2-sided) ideal iff X is a complete
M -ideal. This is due to Alfsen-Effros [AE] and Smith-Ward [SW]. The
entire idea of M-ideals appears in the seminal work in [AE]. The following
isometric lifting result is established in the appendix to [AR], extending
a lifting result in [EH] to the pure operator spaces setting. (An operator
space X is called nuclear if it satisfies Definition 1.4, replacing “A” by “X”
in 1.4.)

THEOREM 2.16. Let X C Y be operator spaces with X a nuclear complete
M-ideal in'Y', Y locally reflexive, and Y/ X separable. Then Iy x admits a
completely contractively life L :Y/X — Y.

We need one more concept, which appears fundamental for the study of
the CSEP.

DEFINITION 2.17. An operator space X is said to be of finite matriz type
if there is a C > 1 so that for any finite dimensional operator space G, there
is an integer n with

(2.10) I T||co < C|T|l, for all linear operators T : G — X.
If C' works, we say X is C-finite.
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This concept was introduced in [Ro2]. In [OR], it is proved that if X
is separable and co(X) has the CSEP, then X is of finite matriz type. This
suggests the

CONJECTURE. If X is separable with the CSEP, then X is of finite
matrix type.

It also shows that K fails the CSEP, since it is easily seen that Ky in
not of finite matrix type. (In fact, Theorem 2.9 is proved in the course estab-
lishing this result). The following yields the needed remaining ingredients

for Theorem 2.8.

PRroPOSITION 2.18.
(a) If an operator space X is C-finite, so is £>°(X).
(b) If X is C-finite, X is C-locally reflexive.
(€) My,o0 ® Mooy, is 1-finite, for all n.
(d) co(Mp oo ® Mso ) is a complete M-ideal in (>°(Mp oo ® Moo 1), for
all n.

(a),(b) are proved in [AR] and (c) is established in [Ro2]. Also, (d) is
proved in [AR], as a simple consequence of the criterion developed there
for X to be a complete M-ideal in Y, namely that existence of a complete
M -approximate identity.

PrROOF OF THEOREM 2.8. Let n > 1, let X C Y be separable opera-
tor spaces, let Z = ¢o(My,00 ® Moo ), and let T : X — Z be a completely
bounded map. It follows easily that setting W = ¢°°(M,, oo ® Mo ), then W
is completely contractively complemented in B(¢2) and hence W is isometri-
cally injective, by Theorem 2.3. Then there exists an extension T:Y - W
of T with

(2.11) ITlleb = | lleb -

Now by Proposition 2.18, W is 1-finite and hence 1-locally reflexive. It is
easily seen directly that Z is nuclear; of course this also follows since Z is
completely isometric to a completely contractively complemented subspace
of K. Furthermore, since Z is a complete M-ideal in W, Z is a complete M-
ideal in W < 7 +T(Y). Again, W is 1-locally reflexive, and so by Theorem
2.16, Z is completely co-contractively complemented in . But then there
exists a projection P from W onto Z with

(212) 1Pl <2

Finally, letting S = PT, then S is a cb extension of T with ||S]|ep < 2/|T||eb-
(]

The following is one of the crucial ingredients needed to establish The-
orem 2.12.
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THEOREM 2.19. [OR] Let X C Y be separable operator spaces, X C
B(H), and T : X — X a complete isomorphism from X onto X. Then
there exists a Y with X C Y C B(H) and a complete surjective isomorphism
T:Y =Y extending T.

This result bears on the “complemented ideal” problem discussed fol-
lowing the proof of Sobczyk’s theorem above.

ProproSITION 2.20. Let X C Y be separable operator spaces with X
completely isomorphic to K or Ko. If Y/X has the bounded approximation
property, then X is complemented in'Y .

PROOF. Suppose X is completely isomorphic to K. Let T': X — K be
a complete surjective isomorphism, and let K CY € B(fy) and T:Y — Y
be a complete isomorphism extending 7. Then Y /K is isomorphic to Y/X
and so has the bounded approximation property. K is moreover an M-ideal
in Y, since it is an ideal in B(f5). By a result of Ando mentioned above [A],
K is complemented in ¥ and hence X is complemented in Y. Now if X is
completely isomorphic to Ko, set W = (M1 ® My @ - -+ ). It is known that
W is completely isomorphic to B(¢3). (This is a simple application of the
decomposition method for operator spaces). It follows, since Theorem 2.19
is invariant under complete isomorphisms, that one may replace B({2) by W
in its statement. Thus we now let T : X — Ky be a complete isomorphism
and choose Ko CY € Wand T : Y — Y a complete isomorphism extending
T. Again, K is an M-ideal in Y and Y /K| is isomorphic to Y/X and so has
the bounded approximation property, so again by [A], Kg is complemented
in Y and hence X is complemented in Y. U

REMARKS. A different proof is given in [AR] of the special case of Ando’s
result used above, via the concept of extendable local liftings (ell’s) intro-
duced there. Thus, given Banach spaces X C Y, (X,Y) is said to admit
ell’s if there is a C' > 1 so that for all finite-dimensional £ C Y/X, there
exists a T : Y/X — Y™ with |T|| < C so that T(F) C Y and e = 77 '(e)
where 7 : Y — Y/X is the quotient map. It is proved in [AR] that if J is
a nuclear ideal in a C*-algebra A so that A/J is separable, then J is com-
plemeted in A provided (J,A) has extendable local liftings. (This is easily
seen to be the case if A/J has the bounded approximation property.) It
follows that the conclusion of 2.20 holds if one replaces the assumption that
Y/X has the bounded approximation property by the more general one that
(X,Y) has ell’s.

The following result is our last needed ingredient for 2.12.

THEOREM 2.21. [AR] Let J C Y C A with J a nuclear ideal in a
C*-algebra A and Y a A-locally reflezive operator space with Y/ J separable.
Then for every e > 0, there exists a completely bounded lift L : Y/J — Y
of Iy 7 with ||L||cy < X +e.
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This result is generalized to a pure operator space theorem in [AR,
Theorem 2,4]. The hypotheses then require more than the assumption that
J is a complete M-ideal, for the proof makes use of the special approximate
identities that exist in (non-unital) C*-algebras. Theorem 2.21 generalizes
a result of Effros-Haagerup [EH], which establishes 2.21 when Y = A itself.
The fact that Y need not be 1-locally reflexive causes difficulties, however,
and the proof in [AR] is somewhat delicate, although based in part on the
techniques in [EH]. Note also that the result of [EH] itself follows from
Theorem 2.16, whose proof in [AR] follows Ando’s construction rather than
the argument in [EH]. In fact, we don’t know if the conclusion of Theorem
2.16 holds, if “1” and “contractive” are deleted in its statement.

We finally conclude with the

PrOOF OF THEOREM 2.12. Let X C Y be separable operator spaces
with V" locally reflexive and let 7' : X — K be a complete surjective iso-
morphism. By Theorem 2.19, there exists a Y with K C Y C B({2) and

a complete isomorphism 7 : Y — Y extending 7. But then Y is separable
locally reflexive, and of course K is a nuclear ideal in A = B(¢3). Theorem
2.20 yields a completely bounded projection P from Y onto K, and hence
S = PT is the desired extension from Y to K. O
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