
Some answers for the exam questions – Dec 9 2011

1. Since 101 is prime, a100 ≡ 1 (mod 101) for all nonzero a; thus a1000 ≡ 1 as well.

2. (a) There are 256! permutations. Roughly speaking, ln(256!) = 256 ln(256) − n +
( 1
2 ) ln(2π256) = 1167.3 or so, meaning 256! is about 10507 . That’s a lot!

(b) There are at most 256 permutations of each type. (Only 255 of the second type
because we cannot have a=0, and of the third type we are restricted to those power
operations which are invertible.) So |P | < 768.

(c) Clearly there can be at most 7682 composites of two, and at most 768n composites
of n, of the elements in P .

(d) The number of permutations that are composites of 100 (or fewer) elements of
P is then certainly less than 768 + 7682 + . . . + 768100 = (768101 − 768)/767 (summing a
geometric series). The log of this number is less than 101 log(768)− log(767), about 664.4
— significantly less than the 1167.3 that would be needed to allow for the possibility that
we have captured all possible permutations! In fact this same reasoning shows there are
permutations that require at least 175 “simple” permutations (and I’m sure that more
careful arguments would push that number up even higher).

3. The function g(m) = md will invert the cubing operation as long as 3d ≡ 1 modφ(2047).
Since 2047 = 23 · 89, φ(2047) = 22 · 88 = 1936 = 3 · 645 + 1; thus an inverse of 3 is
−645 = 1291 and we can decrypt a message m by computing m1291 (mod 2047).

(Actually using the Chinese Remainder Theorem, we only need to choose d so that
x3d ≡ 1 (mod 23) and x3d ≡ 1 (mod 89); so we need 3d ≡ 1 (mod 22) and 3d ≡ 1
(mod 88) for all x; but the latter will imply the former anyway! Since 88 = 3 · 29 + 1,
3−1 = −29 = 59. Therefore x→ x59 is an inverse of the cubing function.

4. By CRT we need x2 ≡ 9 (mod 7) and (mod 13). Those moduli are prime so the
solutions are precisely the integers x which have x ≡ 3 or −3 modulo each of the two
primes. We could have x ≡ +3 (mod 7) and x ≡ +3 (mod 13); those together are
equivalent to x ≡ +3 (mod 91). Similarly x = −3 (mod 91) is a solution. But we could
also have x ≡ +3 (mod 7) and x ≡ −3 (mod 13); x ≡ 10 (mod 91) will do this. The
remaining case is x ≡ −10 (mod 91). So the (only) four solutions are {3,−3, 10,−10}.

5. The p in the definition of φ is the same as the p in the cardinality of the field; recall that
that prime showed up in our discussion as the characteristic of the field: the number of 1’s
for which p·1 = 1+1+. . .+1 = 0. So for any element x of the field, p·x = (p·1)x = 0x = 0.
As a consequence, ax = 0 whenever a is an integer which is a multiple of p.

But if p is prime, then p divides the binomial coefficients
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all the terms are zero in F except those corresponding to k = 0 and k = p, so that
(x+ y)p = xp + yp, which is to say, φ preserves sums.

It also obviously preserves products (because multiplication is commutative in a field):
φ(xy) = (xy)p = xpyp = φ(x)φ(y).

When F = Zp itself, then the Fermat theorem asserts that ap ≡ a for all integers a,
i.e. φ(a) = a for all a ∈ Zp. In other words, φ is the identity function in this case.

When F is a larger field, φ is definitely NOT the identity. For example when F =
{0, 1, a, b} is the field we discussed in class, we must have φ(0) = 0 and φ(1) = 1 but
φ(a) = a2 = a+ 1 = b and similarly φ(b) = a.

6 (a) The point P is of order 3 if 3P = O, the identity element of the curve. Well, the most
natural way to compute 3P is as 2P + P , so the defining property of being an element of
order 3 is that 2P = −P . But 2P is computed by drawing the tangent line at P and finding
the other point Q where that line intersects the curve; 2P is then defined as the negative
of Q. So the point P has order 3 iff −Q = −P , i.e., iff the third point of intersection of
the line and the curve is ... exactly P again. In other words, the curve has a “triple point”
at P – a point of inflection at P .

(b) If (x, y) is a rational point on this elliptic curve, we can find a common denominator
Z for x and y to write x = X/Z and y = Y/Z for some other integers X and Y . But
then x3 + y3 = 1 implies X3 + Y 3 = Z3. As Euler proved, the Fermat conjecture is
true for exponent 3, which means that the only solutions in integers to X3 + Y 3 = Z3

have X = 0, Y = 0, and/or Z = 0. In our case, Z was chosen as a rational number’s
denominator, so it is nonzero. If X = 0 then X3 + Y 3 = Z3 implies Y = Z so that
(x, y) = (X/Z, Y/Z) = (0, 1). Similarly if Y = 0 then (x, y) = (1, 0). So these are the only
rational points on this curve.

Observe that this curve then has order exactly 3 (including the point at infinity).
That means these are both point of order 3. By part (a), these should also be inflection
points. A sketch of the graph (or the use of implicit differentiation) should convince you
that this is true.

One can turn the argument backwards: if there is a way to show that the elliptic
curve has only these rational points, then Fermat’s Last Theorem is true for exponent 3.
Indeed, Fermat himself looked at the curve y2 = 1 − x4; a small bit of algebraic trickery
transforms this into an elliptic curve, which allows him to show (by “(infinite) descent”)
that this curve has no rational points except those with x = 0 or y = 0. As a consequence,
Fermat concluded that there are no two perfect powers that add up to a perfect square –
a stronger statement that immediately implies the FLT conjecture is true with exponent
4.

Unfortunately, the corresponding curve for higher exponents is no longer an elliptic
curve at all, so it becomes much more difficult to analyze the curve and decide it has only
the trivial rational points. The final proof of FLT was related to elliptic curves, but in a
very different way.
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