Math 408C (Rusin): Exam III, Nov 22 2011. Put your NAME on each sheet you turn in.

1. Compute $\lim _{x \rightarrow 1}\left(\frac{1}{x-1}-\frac{1}{\ln (x)}\right)$.
2. Suppose f is the function defined by

$$
f(x)= \begin{cases}2, & \text { if } 0<x<1 \\ 1, & \text { if } 1<x<2 \\ -1, & \text { if } 2<x<3\end{cases}
$$

Sketch the graph of f. Then sketch the graph of a continuous function F which is an antiderivative of f on the interval $(0,3)$.
3. Compute $\int_{-2}^{2}\left(3+\sqrt{4-x^{2}}\right) d x$. (Hint: you may wish to sketch the graph of this function first.)
4. Estimate the value of $\int_{1}^{3} \frac{1}{x^{3}+1} d x$ by computing a Riemann sum for this integral. Your Riemann sum must have at least 4 summands. Your final answer may be in the form of unsimplified fractions, e.g. " $\frac{2}{3}+\frac{15}{16}+\frac{1}{2}$ " would be a suitable form for an answer.
5. Use the properties of integrals to explain why $\int_{1}^{\pi} \frac{\sin \left(x^{2}\right)}{x} d x \leq \ln (\pi)$.
6. If $G(x)=\int_{2 x}^{x^{2}} \tan (\sqrt{t}) d t$, then compute $G^{\prime}(x)$.
7. Evaluate $\int_{0}^{4}(4-t) \sqrt{t} d t$.
8. Evaluate $\int_{-\pi / 2}^{\pi / 2} x \sin \left(x^{2}\right) d x$.
9. Find an antiderivative of $\frac{e^{t}}{e^{t}+3}$
10. What is the volume of the portion of the unit sphere $x^{2}+y^{2}+z^{2} \leq 1$ where $z \geq \frac{1}{2}$? (You could call it the "top half of the northern hemisphere", although it clearly has less than half the volume even though it has half the height!)

