BENNETT LINEAR ALGEBRA PRIZE EXAM Dec 12 2017

Name:	UT EID:		
Linear Algebra Course:	When?	Instructor:	
Permanent Mailing Address:			
E-mail address:			
College (Natural Sciences, Engin	$eering, etc.)_$		

Submit your solutions on the sheets provided, with your name on each sheet. No calculators allowed. You must justify your claims.

1. Find the four real numbers a_i for which

$$\frac{8x+12}{(x^2-1)^2} = \frac{a_1}{x-1} + \frac{a_2}{(x-1)^2} + \frac{a_3}{x+1} + \frac{a_4}{(x+1)^2}$$

- **2.** Suppose A and B are square matrices of the same size, and that AB = 0. Must BA = 0 too? (If you say "yes", give a proof; if you say "no", give a counterexample.)
- **3.** Compute det(C) where C is the $n \times n$ matrix with $C_{ij} = 1$ if $i \neq j$ and $C_{ii} = 0$.
- 4. Suppose M is the 3×3 matrix which represents a 180° rotation around the line x = y/2 = z/3. (That's the line that contains the vector $\langle 1, 2, 3 \rangle$.) What are the eigenvalues of M? For extra credit give also the eigenvectors.
- 5. Suppose V is the vector space of all 3×3 matrices. Let \mathcal{L} be the set of linear maps from V to V. This \mathcal{L} is a vector space (you don't have to prove that).

(a) Show that for every invertible 3×3 matrix P, the function $f: V \to V$ given by $f(M) = PMP^{-1}$ is in \mathcal{L} (i.e. show that f is a linear transformation).

(b) Are there other elements of \mathcal{L} besides those in (a)? (If you say "no", give a proof. If you say "yes", find one.)

Answers will soon appear at http://www.math.utexas.edu/users/rusin/Bennett/.