Name: \qquad UT EID: \qquad
Linear Algebra Course: \qquad When? \qquad Instructor: \qquad
Permanent Mailing Address: \qquad

E-mail address:
College (Natural Sciences, Engineering, etc.)
Submit your solutions on the sheets provided, with your name on each sheet. No calculators allowed. You must justify your claims.

1. Find the four real numbers a_{i} for which

$$
\frac{8 x+12}{\left(x^{2}-1\right)^{2}}=\frac{a_{1}}{x-1}+\frac{a_{2}}{(x-1)^{2}}+\frac{a_{3}}{x+1}+\frac{a_{4}}{(x+1)^{2}}
$$

2. Suppose A and B are square matrices of the same size, and that $A B=0$. Must $B A=0$ too? (If you say "yes", give a proof; if you say "no", give a counterexample.)
3. Compute $\operatorname{det}(C)$ where C is the $n \times n$ matrix with $C_{i j}=1$ if $i \neq j$ and $C_{i i}=0$.
4. Suppose M is the 3×3 matrix which represents a 180° rotation around the line $x=y / 2=z / 3$. (That's the line that contains the vector $\langle 1,2,3\rangle$.) What are the eigenvalues of M ? For extra credit give also the eigenvectors.
5. Suppose V is the vector space of all 3×3 matrices. Let \mathcal{L} be the set of linear maps from V to V. This \mathcal{L} is a vector space (you don't have to prove that).
(a) Show that for every invertible 3×3 matrix P, the function $f: V \rightarrow V$ given by $f(M)=P M P^{-1}$ is in \mathcal{L} (i.e. show that f is a linear transformation).
(b) Are there other elements of \mathcal{L} besides those in (a)? (If you say "no", give a proof. If you say "yes", find one.)

Answers will soon appear at http://www.math.utexas.edu/users/rusin/Bennett/ .

