BENNETT DIFFERENTIAL EQUATIONS PRIZE EXAM May 8 2018

Name:	UT EID:	
Differential Equations Course:	When?	Instructor:
Permanent Mailing Address:		
E-mail address: College (Natural Sciences, Engineering,		

Submit your solutions on the sheets provided, with your name on each sheet. No calculators allowed. You must justify your claims.

- 1. Find the general solution of $x^4y'' + 5x^3y' + 4x^2y = 1$.
- 2. Sketch the solution to the differential equation

$$\frac{dy}{dx} = y^4 + 4 \qquad y(3) = 0$$

Identify any critical points and inflection points, and explain why there are or are not any horizontal or vertical asymptotes.

3. Solve the differential equation

$$(4xy + 2y^{2} + 2x)\frac{dy}{dx} = x^{2} + 2xy + 3y^{2} + 2y \qquad y(1) = -2$$

Hint: there is an integrating factor μ for which $\partial \mu / \partial x = \partial \mu / \partial y$.

- **4.** Solve the system $\frac{dx}{dt} = y(x+y)^5$, $\frac{dy}{dt} = x(x+y)^5$, x(0) = 1, y(0) = 0 (*Hint:* Add and subtract.)
- 5. The biharmonic equation from continuum mechanics is the fourth-order linear partial differential equation $u_{xxxx} + 2u_{xxyy} + u_{yyyy} = 0$. For partial credit, find a nonzero solution u(x, y) to this equation. For full credit, find a non-polynomial solution. For extra credit, find an infinite-dimensional vector space of solutions.

Answers will soon appear at http://www.math.utexas.edu/users/rusin/Bennett/ .