Name: \qquad UT EID: \qquad
Differential Equations Course: \qquad When? \qquad Instructor: \qquad
Permanent Mailing Address: \qquad

E-mail address: \qquad
College (Natural Sciences, Engineering, etc.) \qquad
Submit your solutions on the sheets provided, with your name on each sheet. No calculators allowed. You must justify your claims.

1. Find the general solution of $x^{4} y^{\prime \prime}+5 x^{3} y^{\prime}+4 x^{2} y=1$.
2. Sketch the solution to the differential equation

$$
\frac{d y}{d x}=y^{4}+4 \quad y(3)=0
$$

Identify any critical points and inflection points, and explain why there are or are not any horizontal or vertical asymptotes.
3. Solve the differential equation

$$
\left(4 x y+2 y^{2}+2 x\right) \frac{d y}{d x}=x^{2}+2 x y+3 y^{2}+2 y \quad y(1)=-2
$$

Hint: there is an integrating factor μ for which $\partial \mu / \partial x=\partial \mu / \partial y$.
4. Solve the system $\quad \frac{d x}{d t}=y(x+y)^{5}, \quad \frac{d y}{d t}=x(x+y)^{5}, \quad x(0)=1, \quad y(0)=0$ (Hint: Add and subtract.)
5. The biharmonic equation from continuum mechanics is the fourth-order linear partial differential equation $u_{x x x x}+2 u_{x x y y}+u_{y y y y}=0$. For partial credit, find a nonzero solution $u(x, y)$ to this equation. For full credit, find a non-polynomial solution. For extra credit, find an infinite-dimensional vector space of solutions.

Answers will soon appear at http://www.math.utexas.edu/users/rusin/Bennett/ .

