1. Find a polynomial $f(x)$ which has the same values as $g(x)=\frac{120}{x}$ for $x=1,2,3,4,5$. (That is, we need $f(1)=120, f(2)=60$, etc.)

ANSWER: The polynomial

$$
f(x)=x^{4}-15 x^{3}+85 x^{2}-225 x+274
$$

will do. Any other solution must differ from this f by a polynomial that vanishes at all five of these points, i.e. the other solutions are precisely of the form $f(x)+(x-1)(x-$ $2)(x-3)(x-4)(x-5) P(x)$ for any other polynomial P. In particular, this f is the only solution of degree less than 5 .

To find this f, one may look for the right coefficients in $f(x)=a+b x+c x^{2}+d x^{3}+e x^{4}$ (say); since $f(1)=120$ we have $a+b+c+d+e=120$, and from each of the other four data points we obtain another equation. Solve that system of 5 equations in 5 unknowns, e.g. by row-reduction, in order to determine that $a=274, b=-225$ etc.

Incidentally the coefficient matrix here is called a Vandermonde matrix: $M_{i j}=$ $\left(x_{i}\right)^{j-1}$. The determinant of M is easily computed but here we would presumably need the inverse of M, which is not so easily found.

A simpler solution would use a different basis of \mathcal{P}_{4}, the space of all quartic polynomials. Rather than the standard basis $\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ we may use the five polynomials $f_{i}(x)=(x-1)(x-2)(x-3)(x-4)(x-5) /(x-i)$. Each $f_{i}(x)$ vanishes at all of the points $\{1,2,3,4,5\}$ except $x=i$ itself, where it has the value $(i-1)!(5-i)!(-1)^{5-i} \neq 0$. Thus these f_{i} are linearly independent and hence do indeed form a basis for \mathcal{P}_{4}. We then obtain the polynomial desired as

$$
\begin{gathered}
f=120 \cdot \frac{f_{1}}{24}+60 \cdot \frac{f_{2}}{-6}+40 \cdot \frac{f_{3}}{4}+30 \cdot \frac{f_{4}}{-6}+24 \cdot \frac{f_{5}}{24} \\
=(x-1)(x-2)(x-3)(x-4)(x-5)\left(\frac{5}{x-1}-\frac{10}{x-2}+\frac{10}{x-3}-\frac{5}{x-4}+\frac{1}{x-5}\right)
\end{gathered}
$$

This is a typical example of interpolation or curve-fitting. Since in this problem the x_{i} are evenly spaced, the most practical method of hand-calculation is to first compute $f^{*}(x)=f(x+1)-f(x)$ from its desired values, then use f^{*} to deduce f. Iterating this idea, we successively compute $f^{* * * *}=24$, then $f^{* * *}=24 x-54, f^{* *}, f^{*}$, and then f.
2. Suppose A and B are square matrices of the same size, and that $A B A B A=I$.
(a) Explain why A is invertible.
(b) Show that $A B=B A$.

ANSWER: Of course A is invertible: its inverse is $B A B A$, since we are given that $A(B A B A)=I!$ (One may also note that $\operatorname{det}(A)^{3} \operatorname{det}(B)^{2}=\operatorname{det}(A B A B A)=\operatorname{det}(I)=1$ and so $\operatorname{det}(A)$ must be nonzero, so that A is invertible.)

For (b) you could simply compute

$$
A B=A B I=A B(A B A B A)=A B A B A B A=(A B A B A) B A=I B A=B A
$$

Or, note that $(A B)(A B A)=I$ means $A B$ is the "left inverse" of $A B A$, while $(A B A)(B A)=$ I means $B A$ is the "right inverse" of $A B A$; since (for matrices) left-inverses and rightinverses are equal, we have $A B=B A$. Or use $A(B A)(B A)=I$ to note that $A=(B A)^{-2}$; since a matrix commutes with its every power, $B A$ commutes with A, i.e. $A(B A)=(B A) A$; now right-multiply both sides of this equation by A^{-1} to get $A B=B A$.

This problem was inspired by problem A4 of the 2018 Putnam Exam.
3. The exponential function is defined for square matrices A by the usual power series:

$$
e^{A}=I+A+\frac{1}{2} A^{2}+\ldots=\sum_{n=0}^{\infty} \frac{1}{n!} A^{n}
$$

Compute e^{A} when $A=\left(\begin{array}{cc}1 & 1 \\ -2 & 4\end{array}\right)$.
ANSWER: We can show, either algebraically or geometrically, that

$$
B:=e^{A}=\left(\begin{array}{cc}
2 e^{2}-e^{3} & e^{3}-e^{2} \\
2 e^{2}-2 e^{3} & 2 e^{3}-e^{2}
\end{array}\right)
$$

We will first need the eigenvalues of A. I compute

$$
\begin{aligned}
& \operatorname{det}(A-x I)=x^{2}-5 x+6=(x-2)(x-3) \\
& \operatorname{ker}(A-2 I)=\operatorname{ker}\left(\begin{array}{ll}
-1 & 1 \\
-2 & 2
\end{array}\right)=\operatorname{span}\binom{1}{1}=\operatorname{span}\left(v_{2}\right) \\
& \operatorname{ker}(A-3 I)=\operatorname{ker}\left(\begin{array}{ll}
-2 & 1 \\
-2 & 1
\end{array}\right)=\operatorname{span}\binom{1}{2}=\operatorname{span}\left(v_{3}\right)
\end{aligned}
$$

Now we can proceed algebraically: from the data above we deduce that $A=P D P^{-1}$ where $D=\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$ is diagonal and $P=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$ (so that $P^{-1}=\left(\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right)$). But from $A=P D P^{-1}$ we deduce (by induction) that $A^{n}=P D^{n} P^{-1}$ for all $n \geq 0$, then that $c_{n} A^{n}=P\left(c_{n} D^{n}\right) P^{-1}$, and then (using the distributive properties of matrix multiplication) that $\sum c_{n} A^{n}=P\left(\sum c_{n} D^{n}\right) P^{-1}$. That is, we can evaluate e^{A}, or indeed any power series $f(A)$, by evaluating it on D and then conjugating by the matrix P.

Since D is diagonal, though, it is very easy to evaluate a power series: $f(D)$ will again be a diagonal matrix, and the i th entry on the diagonal will be $f\left(D_{i i}\right)$. In our case that means $e^{D}=\left(\begin{array}{cc}e^{2} & 0 \\ 0 & e^{3}\end{array}\right)$. Then

$$
e^{A}=P\left(e^{D}\right) P^{-1}=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)\left(\begin{array}{cc}
e^{2} & 0 \\
0 & e^{3}
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{cc}
2 e^{2}-e^{3} & e^{3}-e^{2} \\
2 e^{2}-2 e^{3} & 2 e^{3}-e^{2}
\end{array}\right)
$$

Or we may proceed geometrically. If v is an eigenvector of A, then $A v=\lambda v$ so $A^{2} v=A(A v)=A(\lambda v)=\lambda(A v)=\lambda^{2} v$ and more generally $A^{n} v=\lambda^{n} v$. Then we may evaluate the product of the matrix $B=e^{A}$, or indeed any power series $f(A)$, with the vector $v:\left(\sum c_{n} A^{n}\right) v=\sum c_{n}\left(A^{n} v\right)=\sum c_{n}\left(\lambda^{n} v\right)=f(\lambda) v$. So in our case, $B v_{2}=e^{2} v_{2}$ and $B v_{3}=e^{3} v_{3}$. Now, it's easy to write the standard basis vectors in terms of v_{2} and v_{3} :

$$
\binom{1}{0}=2 v_{2}-v_{3}, \quad\binom{0}{1}=v_{3}-v_{2}
$$

so we compute the effect of B on them:

$$
B e_{1}=B\left(2 v_{2}-v_{3}\right)=2\left(e^{2} v_{2}\right)-\left(e^{3} v_{3}\right)=\left(2 e^{2}\right)\binom{1}{1}-e^{3}\binom{1}{2}=\binom{2 e^{2}-e^{3}}{2 e^{2}-2 e^{3}}
$$

$B e_{2}$ is computed similarly. Then the matrix B representing this linear transformation consists of adjoining these two columns together, giving the matrix shown above.

One student also noted that $C=A-2 I$ has the property that $C^{2}=C$ and so from the definition of e^{C} one may directly compute $e^{C}=I+(e-1) C$. As noted above it is also trivial to exponentiate diagonal matrices so in particular $e^{2 I}=\left(e^{2}\right) I$. One might also hope that $e^{C+2 I}=e^{C} e^{2 I}$, and this is true, but only because C and $2 I$ commute. But with this caveat one then has $e^{A}=e^{C} e^{2 I}=(I+(e-1) C)\left(e^{2} I\right)=e^{2}(3 I-A)+e^{3}(A-2 I)$.

The exponential map for matrices is very useful in the study of Lie Groups.
4. A linear transformation $L: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is called a projection if $L(L(v))=L(v)$ for each $v \in \mathbf{R}^{n}$. For example the function $L(x, y, z)=(2 y+3 z, y, z)$ is a projection in \mathbf{R}^{3}.

Show that the only possible eigenvalues of a projection L are 0 and 1 .

ANSWER: Suppose λ is an eigenvector of L. Then there is a nonzero vector v with $L(v)=\lambda v$. Then we compute

$$
L(L(v))=L(\lambda v)=\lambda L(v)=\lambda^{2} v
$$

So if L is a projection then $L(L(v))=L(v)$, so these computations force $\lambda^{2} v=\lambda v$, i.e. $(\lambda-1)(\lambda-0) v=0$. Now, in an vector space a scalar multiplication $c v$ can only yield the zero vector if c is the number 0 or if v is the zero vector. But since our v is an eigenvector, it is nonzero. This forces the scalar to be $0:(\lambda-1)(\lambda-0)=0$, so that either $\lambda=1$ or $\lambda=0$.
5. Find an invertible matrix P for which $P A P^{-1}=B$ where

$$
A=\left(\begin{array}{cc}
1 & 2018 \\
0 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
1 & 41 \\
0 & 1
\end{array}\right)
$$

ANSWER: We need P to be invertible such that $P A=B P$. Writing $P=\left(\begin{array}{cc}x & y \\ z & w\end{array}\right)$, we need

$$
\begin{aligned}
\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)\left(\begin{array}{cc}
1 & 2018 \\
0 & 1
\end{array}\right) & =\left(\begin{array}{cc}
1 & 41 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right) \text { i.e., } \\
\left(\begin{array}{cc}
x & 2018 x+y \\
z & 2018 z+w
\end{array}\right) & =\left(\begin{array}{cc}
x+41 z & y+41 w \\
z & w
\end{array}\right)
\end{aligned}
$$

The upper-left entries force $z=0$, at which point all four entries will match as long as $2018 x-41 w$. (y is arbitrary.) The simplest solution is $x=41, w=2018$, so

$$
P=\left(\begin{array}{cc}
41 & 0 \\
0 & 2018
\end{array}\right)
$$

which is indeed invertible, so this P will suffice.

