
BENNETT LINEAR ALGEBRA PRIZE EXAM Dec 11 2018

1. Find a polynomial f(x) which has the same values as g(x) = 120
x for x = 1, 2, 3, 4, 5.

(That is, we need f(1) = 120, f(2) = 60, etc.)

ANSWER: The polynomial

f(x) = x4 − 15x3 + 85x2 − 225x+ 274

will do. Any other solution must differ from this f by a polynomial that vanishes at all

five of these points, i.e. the other solutions are precisely of the form f(x) + (x − 1)(x −
2)(x− 3)(x− 4)(x− 5)P (x) for any other polynomial P . In particular, this f is the only

solution of degree less than 5.

To find this f , one may look for the right coefficients in f(x) = a+bx+cx2+dx3+ex4

(say); since f(1) = 120 we have a + b + c + d + e = 120, and from each of the other four

data points we obtain another equation. Solve that system of 5 equations in 5 unknowns,

e.g. by row-reduction, in order to determine that a = 274, b = −225 etc.

Incidentally the coefficient matrix here is called a Vandermonde matrix: Mij =

(xi)
j−1. The determinant of M is easily computed but here we would presumably need

the inverse of M , which is not so easily found.

A simpler solution would use a different basis of P4, the space of all quartic polyno-

mials. Rather than the standard basis {1, x, x2, x3, x4} we may use the five polynomials

fi(x) = (x− 1)(x− 2)(x− 3)(x− 4)(x− 5)/(x− i). Each fi(x) vanishes at all of the points

{1, 2, 3, 4, 5} except x = i itself, where it has the value (i − 1)!(5 − i)!(−1)5−i 6= 0. Thus

these fi are linearly independent and hence do indeed form a basis for P4. We then obtain

the polynomial desired as

f = 120 · f1
24

+ 60 · f2
−6

+ 40 · f3
4

+ 30 · f4
−6

+ 24 · f5
24

= (x− 1)(x− 2)(x− 3)(x− 4)(x− 5)

(
5

x− 1
− 10

x− 2
+

10

x− 3
− 5

x− 4
+

1

x− 5

)

This is a typical example of interpolation or curve-fitting . Since in this problem the

xi are evenly spaced, the most practical method of hand-calculation is to first compute

f∗(x) = f(x + 1) − f(x) from its desired values, then use f∗ to deduce f . Iterating this

idea, we successively compute f∗∗∗∗ = 24, then f∗∗∗ = 24x− 54, f∗∗, f∗, and then f .



2. Suppose A and B are square matrices of the same size, and that ABABA = I.

(a) Explain why A is invertible.

(b) Show that AB = BA.

ANSWER: Of course A is invertible: its inverse is BABA, since we are given that

A(BABA) = I! (One may also note that det(A)3 det(B)2 = det(ABABA) = det(I) = 1

and so det(A) must be nonzero, so that A is invertible.)

For (b) you could simply compute

AB = ABI = AB(ABABA) = ABABABA = (ABABA)BA = IBA = BA

Or, note that (AB)(ABA) = I meansAB is the “left inverse” ofABA, while (ABA)(BA) =

I means BA is the “right inverse” of ABA; since (for matrices) left-inverses and right-

inverses are equal, we have AB = BA. Or use A(BA)(BA) = I to note that A = (BA)−2;

since a matrix commutes with its every power, BA commutes with A, i.e. A(BA) = (BA)A;

now right-multiply both sides of this equation by A−1 to get AB = BA.

This problem was inspired by problem A4 of the 2018 Putnam Exam.

3. The exponential function is defined for square matrices A by the usual power series:

eA = I +A+
1

2
A2 + . . . =

∞∑
n=0

1

n!
An

Compute eA when A =

(
1 1
−2 4

)
.

ANSWER: We can show, either algebraically or geometrically, that

B := eA =

(
2e2 − e3 e3 − e2
2e2 − 2e3 2e3 − e2

)

We will first need the eigenvalues of A. I compute

det(A− xI) = x2 − 5x+ 6 = (x− 2)(x− 3)

ker(A− 2I) = ker

(
−1 1
−2 2

)
= span

(
1
1

)
= span(v2)

ker(A− 3I) = ker

(
−2 1
−2 1

)
= span

(
1
2

)
= span(v3)



Now we can proceed algebraically: from the data above we deduce that A = PDP−1

where D =

(
2 0
0 3

)
is diagonal and P =

(
1 1
1 2

)
(so that P−1 =

(
2 −1
−1 1

)
). But

from A = PDP−1 we deduce (by induction) that An = PDnP−1 for all n ≥ 0, then that

cnA
n = P (cnD

n)P−1, and then (using the distributive properties of matrix multiplication)

that
∑
cnA

n = P (
∑
cnD

n)P−1. That is, we can evaluate eA, or indeed any power series

f(A), by evaluating it on D and then conjugating by the matrix P .

Since D is diagonal, though, it is very easy to evaluate a power series: f(D) will again

be a diagonal matrix, and the ith entry on the diagonal will be f(Dii). In our case that

means eD =

(
e2 0
0 e3

)
. Then

eA = P (eD)P−1 =

(
1 1
1 2

)(
e2 0
0 e3

)(
2 −1
−1 1

)
=

(
2e2 − e3 e3 − e2
2e2 − 2e3 2e3 − e2

)

Or we may proceed geometrically. If v is an eigenvector of A, then Av = λv so

A2v = A(Av) = A(λv) = λ(Av) = λ2v and more generally Anv = λnv. Then we may

evaluate the product of the matrix B = eA, or indeed any power series f(A), with the

vector v: (
∑
cnA

n)v =
∑
cn(Anv) =

∑
cn(λnv) = f(λ)v. So in our case, Bv2 = e2v2 and

Bv3 = e3v3. Now, it’s easy to write the standard basis vectors in terms of v2 and v3:(
1
0

)
= 2v2 − v3,

(
0
1

)
= v3 − v2

so we compute the effect of B on them:

Be1 = B(2v2 − v3) = 2(e2v2)− (e3v3) = (2e2)

(
1
1

)
− e3

(
1
2

)
=

(
2e2 − e3
2e2 − 2e3

)
Be2 is computed similarly. Then the matrix B representing this linear transformation

consists of adjoining these two columns together, giving the matrix shown above.

One student also noted that C = A − 2I has the property that C2 = C and so from

the definition of eC one may directly compute eC = I + (e − 1)C. As noted above it is

also trivial to exponentiate diagonal matrices so in particular e2I = (e2)I. One might also

hope that eC+2I = eCe2I , and this is true, but only because C and 2I commute. But with

this caveat one then has eA = eCe2I = (I + (e− 1)C)(e2I) = e2(3I −A) + e3(A− 2I).

The exponential map for matrices is very useful in the study of Lie Groups.



4. A linear transformation L : Rn → Rn is called a projection if L(L(v)) = L(v) for each

v ∈ Rn. For example the function L(x, y, z) = (2y + 3z, y, z) is a projection in R3.

Show that the only possible eigenvalues of a projection L are 0 and 1.

ANSWER: Suppose λ is an eigenvector of L. Then there is a nonzero vector v with

L(v) = λv. Then we compute

L(L(v)) = L(λv) = λL(v) = λ2v

So if L is a projection then L(L(v)) = L(v), so these computations force λ2v = λv,

i.e. (λ − 1)(λ − 0)v = 0. Now, in an vector space a scalar multiplication cv can only

yield the zero vector if c is the number 0 or if v is the zero vector. But since our v is an

eigenvector, it is nonzero. This forces the scalar to be 0: (λ− 1)(λ− 0) = 0, so that either

λ = 1 or λ = 0.

5. Find an invertible matrix P for which PAP−1 = B where

A =

(
1 2018
0 1

)
and B =

(
1 41
0 1

)

ANSWER: We need P to be invertible such that PA = BP . Writing P =

(
x y
z w

)
, we

need (
x y
z w

)(
1 2018
0 1

)
=

(
1 41
0 1

)(
x y
z w

)
i.e.,(

x 2018x+ y
z 2018z + w

)
=

(
x+ 41z y + 41w

z w

)
The upper-left entries force z = 0, at which point all four entries will match as long as

2018x− 41w. (y is arbitrary.) The simplest solution is x = 41, w = 2018, so

P =

(
41 0
0 2018

)
which is indeed invertible, so this P will suffice.


