Name: \qquad UT EID:
Linear Algebra Course: \qquad When? \qquad Instructor: \qquad
Permanent Mailing Address: \qquad

E-mail address:

\qquad
College (Natural Sciences, Engineering, etc.) \qquad
Submit your solutions on the sheets provided, with your name on each sheet. No calculators allowed. You must justify your claims.

1. Find a polynomial $f(x)$ which has the same values as $g(x)=\frac{120}{x}$ for $x=1,2,3,4,5$. (That is, we need $f(1)=120, f(2)=60$, etc.)
2. Suppose A and B are square matrices of the same size, and that $A B A B A=I$.
(a) Explain why A is invertible.
(b) Show that $A B=B A$.
3. The exponential function is defined for square matrices A by the usual power series:

$$
e^{A}=I+A+\frac{1}{2} A^{2}+\ldots=\sum_{n=0}^{\infty} \frac{1}{n!} A^{n}
$$

Compute e^{A} when $A=\left(\begin{array}{cc}1 & 1 \\ -2 & 4\end{array}\right)$.
4. A linear transformation $L: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is called a projection if $L(L(v))=L(v)$ for each $v \in \mathbf{R}^{n}$. For example the function $L(x, y, z)=(2 y+3 z, y, z)$ is a projection in \mathbf{R}^{3}.

Show that the only possible eigenvalues of a projection L are 0 and 1 .
5. Find an invertible matrix P for which $P A P^{-1}=B$ where

$$
A=\left(\begin{array}{cc}
1 & 2018 \\
0 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
1 & 41 \\
0 & 1
\end{array}\right)
$$

Answers will soon appear at http://www.math.utexas.edu/users/rusin/Bennett/

