BENNETT LINEAR ALGEBRA PRIZE EXAM Dec 11 2018

Name: UT EID:		[D:
Linear Algebra Course:	When?	Instructor:
Permanent Mailing Address:		
E-mail address:		
College (Natural Sciences, Eng	gineering, etc.)_	
Submit your solutions on the	shoots provided	with your name on each shoot

Submit your solutions on the sheets provided, with your name on each sheet. No calculators allowed. You must justify your claims.

- **1.** Find a polynomial f(x) which has the same values as $g(x) = \frac{120}{x}$ for x = 1, 2, 3, 4, 5. (That is, we need f(1) = 120, f(2) = 60, etc.)
- **2.** Suppose A and B are square matrices of the same size, and that ABABA = I.
 - (a) Explain why A is invertible.
 - (b) Show that AB = BA.
- **3.** The exponential function is defined for square matrices A by the usual power series:

$$e^{A} = I + A + \frac{1}{2}A^{2} + \ldots = \sum_{n=0}^{\infty} \frac{1}{n!}A^{n}$$

Compute e^A when $A = \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix}$.

4. A linear transformation $L : \mathbf{R}^n \to \mathbf{R}^n$ is called a *projection* if L(L(v)) = L(v) for each $v \in \mathbf{R}^n$. For example the function L(x, y, z) = (2y + 3z, y, z) is a projection in \mathbf{R}^3 .

Show that the only possible eigenvalues of a projection L are 0 and 1.

5. Find an invertible matrix P for which $PAP^{-1} = B$ where

$$A = \begin{pmatrix} 1 & 2018 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & 41 \\ 0 & 1 \end{pmatrix}$$

Answers will soon appear at http://www.math.utexas.edu/users/rusin/Bennett/