\qquad When? \qquad Instructor: \qquad
Permanent Mailing Address: \qquad

E-mail address: \qquad
College (Natural Sciences, Engineering, etc.)
Submit your solutions on the sheets provided, with your name on each sheet. No calculators allowed. You must justify your claims.

1. If $f(x)$ is the function defined by

$$
f^{\prime}(x)=\frac{f(x)}{4 f(x)+3 x-3} \quad \text { and } \quad f(0)=1
$$

what is the value of $f(3)$? (Partial credit will be given for a numerical estimate of this value, with more credit for a closer approximation.)
2. For some functions $A(x)$ and $B(x)$, the set of solutions of the differential equation

$$
y^{\prime}=A(x) y+B(x)
$$

includes both the tangent function $y=\tan (x)$ and the cosine function $y=\cos (x)$. What is the solution to the initial-value problem

$$
y^{\prime}=A(x) y+B(x), \quad y(0)=\pi ?
$$

3. Find a solution to the partial differential equation

$$
x \frac{\partial z}{\partial x}-y \frac{\partial z}{\partial y}=z
$$

which is not a polynomial in x and y. For extra credit give the general solution.
4. Find a (nonzero) solution of the linear differential equation

$$
5 x^{2} y^{\prime \prime}+x(1+x) y^{\prime}-y=0
$$

5. Does every solution of the differential equation $y^{\prime \prime}+e^{x} y=0$ stay bounded as $x \rightarrow \infty$?

Answers will soon appear at http://www.math.utexas.edu/users/rusin/Bennett/ .

