
BENNETT LINEAR ALGEBRA PRIZE EXAM Dec 11 2019

1. Find five rational numbers z, y, x, w, v with the property that for every three numbers

A,B,C we have

(A5+B5+C5)−2(A3+B3+C3)(A2+B2+C2) = z S5+y S3T +xS2U+wST 2+v TU

where S = A + B + C, T = AB + BC + CA, and U = ABC. (You may assume that

five such numbers exist.)

ANSWER: Assuming that there are five such numbers that work for any A,B,C we try

some combinations of A,B,C to get five linear constraints on the variables which we will

then solve. Here are some particularly simple examples

A B C S T U equation
0 0 1 1 0 0 z = −1
−1 2 2 3 0 −4 243z − 36x = −207
0 1 1 2 1 0 32z + 8y + 2w = −6
0 2 −1 1 −2 0 z − 2y + 4w = −39
1 1 −2 0 −3 −2 6v = 42
1 1 −1 1 −1 −1 z − y − x + w + v = −5
1 2 −2 1 −4 −4 z − 4y − 4x + 16w + 16v = −17
1 1 1 3 3 1 243z + 81y + 9x + 27w + v = −15

Taking the first five of these equations gives us a linear system to solve, represented by the

augmented matrix 
1 0 0 0 0 | −1

243 0 36 0 0 | −207
32 8 0 2 0 | −6
1 −2 0 4 0 | −39
0 0 0 0 6 | 42


I find the solution to be (z, y, x, w, v) = (−1, 5,−9,−7, 7).

Remark: It is a theorem that any polynomial in multiple variables Ai which is sym-

metric (that is, the value of the polynomial is unchanged under any permutation of the

variables) may be expressed as a polynomial in the elementary symmetric polynomials

for those variables: those are the coefficients of the various powers of X in the product

(X +A1)(X +A2) . . .. In this problem I simply listed on the right side of the equation all

the monomials in S, T, U which are of total degree 5 in A,B,C.

This idea can also be profitably used in problem 3.



2. Suppose T : V → V is a linear transformation on an n-dimensional vector space V

such that the image of T is exactly the same as the kernel (nullspace) of T . Prove

that n must be even.

ANSWER: Let W = Im(T ) = Ker(T ), and let {b1, b2, . . . , bk} be a basis for W . Since

W = Im(T ), each bi is the image T (ci) of some vector in V (not unique!). I claim that

B = {b1, b2, . . . , bk, c1, c2, . . . , ck} is a basis for V , which will mean n = 2k is even.

First we show B spans V . Given v ∈ V we may find scalars xi such that T (v) =
∑

xibi

because the bi span Im(T ). But then T (v) =
∑

xiT (ci) = T (
∑

xici), which means

v − (
∑

xici) lies in Ker(T ), and that subspace is by hypothesis also spanned by the bi.

Thus there are other scalars yi with v− (
∑

xici) =
∑

yibi, which means v is indeed in the

span of B.

Next we show that B is a linearly independent set. Suppose that there were some

scalars xi and yi such that (
∑

xici)+(
∑

yibi) = 0. Apply T to both sides of this equation:

the bi all lie in W = Ker(T ) so we conclude 0 =
∑

xiT (ci) =
∑

xibi But the bi are linearly

independent so all the xi are zero. Thus our putative linear relation is simply
∑

yibi = 0,

but again the independence of the bi now forces all the yi to be zero as well.

This argument recreates the idea behind the proof of the Rank-Nullity Dimension

Theorem: the statement that for any linear transformation on a finite-dimensional vector

space, we have

dim(Ker(T )) + dim(Im(T )) = dim(V )

Of course if you know that theorem you may apply it directly to answer Question 2.

3. For a certain 3 × 3 matrix X we know the traces Tr(X) = 0, Tr(X2) = 42, and

Tr(X3) = −60. Compute det(X).

ANSWER: The trace of a matrix X is both the sum of its diagonal entries and the sum

of the roots of its characteristic polynomial PX (which are the eigenvalues of X) counted

according to their algebraic multiplicity. In our case there must be three roots r1, r2, r3,

whose sum is zero since Tr(X) = 0. Thus we have r3 = −r1 − r2.

Now by diagonalizing X (or considering the Jordan Normal Form of X) we see that

the roots of PX2 are the squares of the roots of PX , and similarly for PX3 . So the other

two data points tell us that

r21 + r22 + (−r1 − r2)2 = 42 and r31 + r32 + (−r1 − r2)3 = −60



With a bit of algebra we then have

r21 + r22 + r1r2 − 21 = 0 and r1r2(r1 + r2)− 20 = 0

Multiply the first equation by r1 and subtract the second to see that r31 − 21r1 + 20 = 0.

This equation has three roots, 1, 4, and −5, which must then be the three roots of PX .

The determinant of X is then the product of these roots, which is −20.

4. Let R : V → V be a linear transformation on a finite-dimensional vector space V , and

suppose R2 = I. Show that for every vector v ∈ V there exist a unique pair of vectors

v1, v2 ∈ V having R(v1) = v1, R(v2) = −v2, and v = v1 + v2.

ANSWER: Let v1 = 1
2 (I +R)v = 1

2v+ 1
2R(v) and v2 = 1

2 (I−R)v = 1
2v−

1
2R(v). Clearly

v1 + v2 = v.

We have R(v1) = 1
2R(v) + 1

2R
2(v) = 1

2R(v) + 1
2v = v1 and in the same way R(v2) =

1
2R(v)− 1

2R
2(v) = 1

2R(v)− 1
2v = −v2. So we have found one decomposition of v into parts

with the desired properties.

Let us also prove uniqueness. Suppose v = u1 + u2 is another decomposition of v into

summands with R(u1) = u1 and R(u2) = −u2. From u1 + u2 = v1 + v2 we conclude that

w1 = u1 − v1 and w2 = v2 − u2 must be equal. Now, w1 is fixed by R since u1 and v1

are, and likewise w2 is negated by R since u2 and v2 are. But then if we apply R to both

sides of the equation w1 = w2, we deduce w1 = −w2, so that w2 = −w2 and hence w2 = 0.

This in turn makes w1 = 0, and thus u1 = v1 and u2 = v2. So in the end there is only one

decomposition of the vector v with the desired properties.

There is no reason the vector space has to be finite-dimensional. In essence we are

proving that there are enough eigenvectors to span the whole of V , the only possible

eigenvalues being +1 and −1.

5. For a nonzero number c we define An to be the n×n matrix with Aii = 1, Ai,i+1 = c,

and otherwise Aij = 0. For example

A4 =


1 c 0 0
0 1 c 0
0 0 1 c
0 0 0 1


Find a matrix B with BAB−1 = At (the transpose of A).



ANSWER: Let B be the matrix with Bij = 1 if i+j = n+1 and Bij = 0 otherwise. This

matrix is invertible (indeed, it is its own inverse!) and I claim it has the desired property.

Rather than verify this by a matrix calculation, let us see how one could deduce this

form for B; along the way we will see what other matrices B are valid answers.

Let e1, e2, . . . , en be the standard basis vectors in Rn. The form of the matrix An

shows that Ane1 = e1 (i.e. e1 is a +1-eigenvector for An) and then for i > 1 we have

Anei = ei + cei−1. Similarly At
nen = en and for i < n we have At

nei = ei + cei+1.

Now, we want an invertible matrix B with the property that BAn = At
nB. It is

sufficient to ensure that BAne = At
nBe for each basis vector e. So we will decide what

vector Bei should be for each i in turn; that will fill in each of the columns of B.

For example when i = 1 we see that BAne1 = Be1 is supposed to equal At
nBe1, which

means Be1 must be a +1-eigenvector of At
n. Thus we necessarily have Be1 = ken for some

scalar k. (This k must be nonzero lest B have a kernel and thus not be invertible.)

Next BAne2 = B(e2 + ce1) = (Be2) + cken is to equal At
nBe2; that is, v = Be2 must

be a vector for which At
nv = v + cken. The vector ken−1 has this property, so we will

insist that Be2 = ken−1. (It’s actually not hard to show that the set of all vectors with

this property are the vectors in the span of en and en−1. But we need only one.)

Continuing in this way, if we have already decided that Bei−1 = ken−i then from

BAnei = B(ei+cei−1) = Bei+cken−1 we see that v = Bei must satisfy At
nv = v+kcen−i;

but our description of the action of At
n shows that v = ken−i−1 will suffice.

The matrix B with Bei = ken+1−i for every i is the scalar multiple k times the

anti-diagonal matrix 
0 0 . . . 0 0 1
0 0 . . . 0 1 0
0 0 . . . 1 0 0

. . .
0 1 . . . 0 0 0
1 0 . . . 0 0 0




