1. Find five rational numbers z, y, x, w, v with the property that for every three numbers A, B, C we have
$\left(A^{5}+B^{5}+C^{5}\right)-2\left(A^{3}+B^{3}+C^{3}\right)\left(A^{2}+B^{2}+C^{2}\right)=z S^{5}+y S^{3} T+x S^{2} U+w S T^{2}+v T U$
where $S=A+B+C, T=A B+B C+C A$, and $U=A B C$. (You may assume that five such numbers exist.)

ANSWER: Assuming that there are five such numbers that work for any A, B, C we try some combinations of A, B, C to get five linear constraints on the variables which we will then solve. Here are some particularly simple examples

A	B	C	S	T	U	equation
0	0	1	1	0	0	$z=-1$
-1	2	2	3	0	-4	$243 z-36 x=-207$
0	1	1	2	1	0	$32 z+8 y+2 w=-6$
0	2	-1	1	-2	0	$z-2 y+4 w=-39$
1	1	-2	0	-3	-2	$6 v=42$
1	1	-1	1	-1	-1	$z-y-x+w+v=-5$
1	2	-2	1	-4	-4	$z-4 y-4 x+16 w+16 v=-17$
1	1	1	3	3	1	$243 z+81 y+9 x+27 w+v=-15$

Taking the first five of these equations gives us a linear system to solve, represented by the augmented matrix

$$
\left(\begin{array}{ccccc:c}
1 & 0 & 0 & 0 & 0 & -1 \\
243 & 0 & 36 & 0 & 0 & -207 \\
32 & 8 & 0 & 2 & 0 & -6 \\
1 & -2 & 0 & 4 & 0 & -39 \\
0 & 0 & 0 & 0 & 6 & 42
\end{array}\right)
$$

I find the solution to be $(z, y, x, w, v)=(-1,5,-9,-7,7)$.
Remark: It is a theorem that any polynomial in multiple variables A_{i} which is symmetric (that is, the value of the polynomial is unchanged under any permutation of the variables) may be expressed as a polynomial in the elementary symmetric polynomials for those variables: those are the coefficients of the various powers of X in the product $\left(X+A_{1}\right)\left(X+A_{2}\right) \ldots$ In this problem I simply listed on the right side of the equation all the monomials in S, T, U which are of total degree 5 in A, B, C.

This idea can also be profitably used in problem 3.
2. Suppose $T: V \rightarrow V$ is a linear transformation on an n-dimensional vector space V such that the image of T is exactly the same as the kernel (nullspace) of T. Prove that n must be even.

ANSWER: Let $W=\operatorname{Im}(T)=\operatorname{Ker}(T)$, and let $\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ be a basis for W. Since $W=\operatorname{Im}(T)$, each b_{i} is the image $T\left(c_{i}\right)$ of some vector in V (not unique!). I claim that $\mathcal{B}=\left\{b_{1}, b_{2}, \ldots, b_{k}, c_{1}, c_{2}, \ldots, c_{k}\right\}$ is a basis for V, which will mean $n=2 k$ is even.

First we show \mathcal{B} spans V. Given $v \in V$ we may find scalars x_{i} such that $T(v)=\sum x_{i} b_{i}$ because the b_{i} span $\operatorname{Im}(T)$. But then $T(v)=\sum x_{i} T\left(c_{i}\right)=T\left(\sum x_{i} c_{i}\right)$, which means $v-\left(\sum x_{i} c_{i}\right)$ lies in $\operatorname{Ker}(T)$, and that subspace is by hypothesis also spanned by the b_{i}. Thus there are other scalars y_{i} with $v-\left(\sum x_{i} c_{i}\right)=\sum y_{i} b_{i}$, which means v is indeed in the span of \mathcal{B}.

Next we show that \mathcal{B} is a linearly independent set. Suppose that there were some scalars x_{i} and y_{i} such that $\left(\sum x_{i} c_{i}\right)+\left(\sum y_{i} b_{i}\right)=0$. Apply T to both sides of this equation: the b_{i} all lie in $W=\operatorname{Ker}(T)$ so we conclude $0=\sum x_{i} T\left(c_{i}\right)=\sum x_{i} b_{i}$ But the b_{i} are linearly independent so all the x_{i} are zero. Thus our putative linear relation is simply $\sum y_{i} b_{i}=0$, but again the independence of the b_{i} now forces all the y_{i} to be zero as well.

This argument recreates the idea behind the proof of the Rank-Nullity Dimension Theorem: the statement that for any linear transformation on a finite-dimensional vector space, we have

$$
\operatorname{dim}(\operatorname{Ker}(T))+\operatorname{dim}(\operatorname{Im}(T))=\operatorname{dim}(V)
$$

Of course if you know that theorem you may apply it directly to answer Question 2.
3. For a certain 3×3 matrix X we know the traces $\operatorname{Tr}(X)=0, \operatorname{Tr}\left(X^{2}\right)=42$, and $\operatorname{Tr}\left(X^{3}\right)=-60$. Compute $\operatorname{det}(X)$.

ANSWER: The trace of a matrix X is both the sum of its diagonal entries and the sum of the roots of its characteristic polynomial P_{X} (which are the eigenvalues of X) counted according to their algebraic multiplicity. In our case there must be three roots r_{1}, r_{2}, r_{3}, whose sum is zero since $\operatorname{Tr}(X)=0$. Thus we have $r_{3}=-r_{1}-r_{2}$.

Now by diagonalizing X (or considering the Jordan Normal Form of X) we see that the roots of $P_{X^{2}}$ are the squares of the roots of P_{X}, and similarly for $P_{X^{3}}$. So the other two data points tell us that

$$
r_{1}^{2}+r_{2}^{2}+\left(-r_{1}-r_{2}\right)^{2}=42 \quad \text { and } \quad r_{1}^{3}+r_{2}^{3}+\left(-r_{1}-r_{2}\right)^{3}=-60
$$

With a bit of algebra we then have

$$
r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}-21=0 \quad \text { and } \quad r_{1} r_{2}\left(r_{1}+r_{2}\right)-20=0
$$

Multiply the first equation by r_{1} and subtract the second to see that $r_{1}^{3}-21 r_{1}+20=0$. This equation has three roots, 1,4 , and -5 , which must then be the three roots of P_{X}. The determinant of X is then the product of these roots, which is -20 .
4. Let $R: V \rightarrow V$ be a linear transformation on a finite-dimensional vector space V, and suppose $R^{2}=I$. Show that for every vector $v \in V$ there exist a unique pair of vectors $v_{1}, v_{2} \in V$ having $R\left(v_{1}\right)=v_{1}, R\left(v_{2}\right)=-v_{2}$, and $v=v_{1}+v_{2}$.

ANSWER: Let $v_{1}=\frac{1}{2}(I+R) v=\frac{1}{2} v+\frac{1}{2} R(v)$ and $v_{2}=\frac{1}{2}(I-R) v=\frac{1}{2} v-\frac{1}{2} R(v)$. Clearly $v_{1}+v_{2}=v$.

We have $R\left(v_{1}\right)=\frac{1}{2} R(v)+\frac{1}{2} R^{2}(v)=\frac{1}{2} R(v)+\frac{1}{2} v=v_{1}$ and in the same way $R\left(v_{2}\right)=$ $\frac{1}{2} R(v)-\frac{1}{2} R^{2}(v)=\frac{1}{2} R(v)-\frac{1}{2} v=-v_{2}$. So we have found one decomposition of v into parts with the desired properties.

Let us also prove uniqueness. Suppose $v=u_{1}+u_{2}$ is another decomposition of v into summands with $R\left(u_{1}\right)=u_{1}$ and $R\left(u_{2}\right)=-u_{2}$. From $u_{1}+u_{2}=v_{1}+v_{2}$ we conclude that $w_{1}=u_{1}-v_{1}$ and $w_{2}=v_{2}-u_{2}$ must be equal. Now, w_{1} is fixed by R since u_{1} and v_{1} are, and likewise w_{2} is negated by R since u_{2} and v_{2} are. But then if we apply R to both sides of the equation $w_{1}=w_{2}$, we deduce $w_{1}=-w_{2}$, so that $w_{2}=-w_{2}$ and hence $w_{2}=0$. This in turn makes $w_{1}=0$, and thus $u_{1}=v_{1}$ and $u_{2}=v_{2}$. So in the end there is only one decomposition of the vector v with the desired properties.

There is no reason the vector space has to be finite-dimensional. In essence we are proving that there are enough eigenvectors to span the whole of V, the only possible eigenvalues being +1 and -1 .
5. For a nonzero number c we define A_{n} to be the $n \times n$ matrix with $A_{i i}=1, A_{i, i+1}=c$, and otherwise $A_{i j}=0$. For example

$$
A_{4}=\left(\begin{array}{llll}
1 & c & 0 & 0 \\
0 & 1 & c & 0 \\
0 & 0 & 1 & c \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Find a matrix B with $B A B^{-1}=A^{t}($ the transpose of $A)$.

ANSWER: Let B be the matrix with $B_{i j}=1$ if $i+j=n+1$ and $B_{i j}=0$ otherwise. This matrix is invertible (indeed, it is its own inverse!) and I claim it has the desired property.

Rather than verify this by a matrix calculation, let us see how one could deduce this form for B; along the way we will see what other matrices B are valid answers.

Let $e_{1}, e_{2}, \ldots, e_{n}$ be the standard basis vectors in \mathbf{R}^{n}. The form of the matrix A_{n} shows that $A_{n} e_{1}=e_{1}$ (i.e. e_{1} is a +1 -eigenvector for A_{n}) and then for $i>1$ we have $A_{n} e_{i}=e_{i}+c e_{i-1}$. Similarly $A_{n}^{t} e_{n}=e_{n}$ and for $i<n$ we have $A_{n}^{t} e_{i}=e_{i}+c e_{i+1}$.

Now, we want an invertible matrix B with the property that $B A_{n}=A_{n}^{t} B$. It is sufficient to ensure that $B A_{n} e=A_{n}^{t} B e$ for each basis vector e. So we will decide what vector $B e_{i}$ should be for each i in turn; that will fill in each of the columns of B.

For example when $i=1$ we see that $B A_{n} e_{1}=B e_{1}$ is supposed to equal $A_{n}^{t} B e_{1}$, which means $B e_{1}$ must be a +1 -eigenvector of A_{n}^{t}. Thus we necessarily have $B e_{1}=k e_{n}$ for some scalar k. (This k must be nonzero lest B have a kernel and thus not be invertible.)

Next $B A_{n} e_{2}=B\left(e_{2}+c e_{1}\right)=\left(B e_{2}\right)+c k e_{n}$ is to equal $A_{n}^{t} B e_{2}$; that is, $v=B e_{2}$ must be a vector for which $A_{n}^{t} v=v+c k e_{n}$. The vector $k e_{n-1}$ has this property, so we will insist that $B e_{2}=k e_{n-1}$. (It's actually not hard to show that the set of all vectors with this property are the vectors in the span of e_{n} and e_{n-1}. But we need only one.)

Continuing in this way, if we have already decided that $B e_{i-1}=k e_{n-i}$ then from $B A_{n} e_{i}=B\left(e_{i}+c e_{i-1}\right)=B e_{i}+c k e_{n-1}$ we see that $v=B e_{i}$ must satisfy $A_{n}^{t} v=v+k c e_{n-i}$; but our description of the action of A_{n}^{t} shows that $v=k e_{n-i-1}$ will suffice.

The matrix B with $B e_{i}=k e_{n+1-i}$ for every i is the scalar multiple k times the anti-diagonal matrix

$$
\left(\begin{array}{llllll}
0 & 0 & \ldots & 0 & 0 & 1 \\
0 & 0 & \ldots & 0 & 1 & 0 \\
0 & 0 & \ldots & 1 & 0 & 0 \\
& & \ldots & & & \\
0 & 1 & \ldots & 0 & 0 & 0 \\
1 & 0 & \ldots & 0 & 0 & 0
\end{array}\right)
$$

