Name: \qquad UT EID:
Linear Algebra Course: \qquad When? \qquad Instructor: \qquad
Permanent Mailing Address: \qquad

E-mail address:

\qquad
College (Natural Sciences, Engineering, etc.) \qquad
Submit your solutions on the sheets provided, with your name on each sheet. No calculators allowed. You must justify your claims.

1. Find five rational numbers z, y, x, w, v with the property that for every three numbers A, B, C we have
$\left(A^{5}+B^{5}+C^{5}\right)-2\left(A^{3}+B^{3}+C^{3}\right)\left(A^{2}+B^{2}+C^{2}\right)=z S^{5}+y S^{3} T+x S^{2} U+w S T^{2}+v T U$ where $S=A+B+C, T=A B+B C+C A$, and $U=A B C$. (You may assume that five such numbers exist.)
2. Suppose $T: V \rightarrow V$ is a linear transformation on an n-dimensional vector space V such that the image of T is exactly the same as the kernel (nullspace) of T. Prove that n must be even.
3. For a certain 3×3 matrix X we know the traces $\operatorname{Tr}(X)=0, \operatorname{Tr}\left(X^{2}\right)=42$, and $\operatorname{Tr}\left(X^{3}\right)=-60$. Compute $\operatorname{det}(X)$.
4. Let $R: V \rightarrow V$ be a linear transformation on a vector space V, and suppose $R^{2}=I$. Show that for every vector $v \in V$ there exist a unique pair of vectors $v_{1}, v_{2} \in V$ having $R\left(v_{1}\right)=v_{1}, R\left(v_{2}\right)=-v_{2}$, and $v=v_{1}+v_{2}$.
5. For a nonzero number c we define A_{n} to be the $n \times n$ matrix with $A_{i i}=1, A_{i, i+1}=c$, and otherwise $A_{i j}=0$. For example

$$
A_{4}=\left(\begin{array}{llll}
1 & c & 0 & 0 \\
0 & 1 & c & 0 \\
0 & 0 & 1 & c \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Find a matrix B with $B A B^{-1}=A^{t}($ the transpose of $A)$.
Answers will soon appear at http://www.math.utexas.edu/users/rusin/Bennett/

