Submit your solutions with all work shown, by 8pm (Austin time) as an email attachment to rusin@math.utexas.edu. During the exam you must abide the rules previously sent via email.

1. Two functions f and g are said to be inverses of each other if $f(g(t))=t$ for every t in some interval, and $g(f(u))=u$ for every u in another interval. For example the logarithm and exponential functions are inverses of each other, as are the cosine function and any branch of the arc-cosine function.

Find a differentiable function f for which f and f^{\prime} are inverses of each other.
ANSWER: We need a function whose derivative is also its inverse. We might look in a family of functions that is closed under both operations of differentiation and inversion; one such family is the set of power functions $f(x)=A x^{B}$. Such a function has derivative $A_{2} x^{B_{2}}$ and inverse $A_{3} x^{B_{3}}$ where $A_{2}=(A B), B_{2}=(B-1), A_{3}=A^{-1 / B}$, and $B_{3}=1 / B$. So we simply need numbers A, B for which $A B=A^{-1 / B}$ and $B-1=1 / B$. The latter condition is satisfied iff $B^{2}-B-1=0$, whose roots are the Golden Ratio $\phi=$ $(1+\sqrt{5}) / 2$ and its negative reciprocal $\bar{\phi}=(1-\sqrt{5}) / 2$. In either case we additionally need $A^{1+(1 / B)}=1 / B$, which simplifies to $A=(1 / B)^{1 / B}$. Numerically, our function is approximately $0.7427429447 x^{1.618033988}$.
2. Find the general solution of $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=5\left(y^{\prime}\right)^{3}$

ANSWER: This equation is second-order autonomous, so we can reduce the order with the substitution $v=y^{\prime}$, since then $y^{\prime \prime}=v^{\prime}=v \frac{d v}{d y}$ and the original equation implies $y v \frac{d v}{d y}+v^{2}=5 v^{3}$. This equation holds if $v=0$, i.e. if y is any constant; otherwise we have $\frac{d v}{d y}+\frac{1}{y} v=\frac{5}{y} v^{2}$. This is now a Bernoulli differential equation (with exponent 2), which we can solve by dividing by v^{2}, to get an equation which is first-order linear in $u=v^{-1}$. Indeed, we have $d u / d y=-v^{-2} d v / d y=\frac{1}{y} v^{-1}-\frac{5}{y}=\frac{1}{y} u-\frac{5}{y}$. Now we use an integrating factor of $1 / y$ to get

$$
\frac{d(u / y)}{d y}=-5 / y^{2}=\frac{d}{d y}(5 / y)
$$

so that $u / y=5 / y+C$ for some C. Solve for u and recall $v=1 / u=1 /(5+C y)$. But $v=d y / d x$ so we end up with a separable differential equation in x and $y:(5+C y) d y=d x$

The general solution is $x=5 y+(C / 2) y^{2}+C^{\prime}$. When $C=0$ we get the solutions $y=\frac{1}{5}\left(x-x_{0}\right)$ for arbitrary constant x_{0}; otherwise we may use the Quadratic Formula to get solutions which may be written

$$
y=\frac{-5 \pm \sqrt{2 c\left(x-x_{0}\right)}}{c}
$$

with arbitrary x_{0} and nonzero c. (I am writing the solutions in terms of $x-x_{0}$ since the original equations were independent of x.)
3. An object moves along the real number line; its position $x(t)$ at time t satisfies

$$
x^{\prime \prime}(t)+4 x(t)=x(t)\left(x^{\prime}(t)\right)^{2}
$$

Show that if $x(0)=1$ and $x^{\prime}(0)=0$ then the object follows a periodic trajectory, but that some other initial conditions do not lead to oscillation.

ANSWER: If we let $v=d x / d t$ be the object's velocity, then we may trace the object's movement in phase space as it traces a trajectory $(x(t), v(t))$, starting at the point $(1,0)$. From the first-order system

$$
\begin{aligned}
& \frac{d x}{d t}=v \\
& \frac{d v}{d t}=x\left(v^{2}-4\right)
\end{aligned}
$$

we can determine whether this trajectory heads upwards or downwards, to the left or to the right. For example, the trajectory heads roughly southwest from points where $x>0$ and $v>2$. Clearly the lines $v= \pm 2$ are trajectories themselves (they correspond to the solutions $x(t)= \pm 2 t+x_{0}$ of the original equation); the origin $x=v=0$ is the trajectory corresponding to the solution $x(t)=0$. We can determine the shape of the other trajectories from their slopes $d v / d x$ at each point; with the Chain Rule, the differential equations imply $d v / d x=x\left(v^{2}-4\right) / v$. This is a separable differential equation: from $2 v d v /\left(v^{2}-4\right)=2 x d x$ we deduce that $\log \left(\left|v^{2}-4\right|\right)=x^{2}-C$, i.e. $v^{2}-4=A e^{x^{2}}$ for some constant A (depending on the trajectory). Note in particular that this allows at most two values of x for each value of v and vice versa; thus if the object should ever return to a position x it has been in twice before, it must surely repeat the very same motions, that is, $x(t)=x(t-T)$ for some time interval T. In simple terms: the trajectories that appear to spiral must in fact form closed loops. This applies to all trajectories that start
(and must therefore stay) between the trajectories $v=2$ and $v=-2$, including ours which starts with $v=0$.

It is a subtle point is whether or not this T really exists: we must decide whether, in a finite amount of time, the object can actually complete the entire loop around phase space, or whether instead it slows and asymptotically approaches some point on the loop, as $t \rightarrow \infty$. (The point would necessarily have to have a v coordinate of 0 .) We can compute the amount of time needed to follow a trajectory from one point $\left(x_{0}, v_{0}\right)$ to another. For simplicity, let us consider the case that both $v_{i}>0$. Then as time flows, we will follow the curve $v=\sqrt{4+A e^{x^{2}}}$. Since $v=d x / d t$, we can solve the original differential equation by solving the separable equation $d t=d x / \sqrt{4+A e^{x^{2}}}$. Hence the time needed to follow that portion of the curve is given by

$$
t_{1}-t_{0}=\int_{x_{0}}^{x_{1}} \frac{d x}{\left(4+A e^{x^{2}}\right)^{1 / 2}}
$$

The particular trajectory proposed in the question starts at $\left(x_{0}, v_{0}\right)=(1,0)$, which requires $A=-4 / e$, so the object will make it to the opposite extreme position $x_{1}=-1$ in $\int_{-1}^{1} \frac{d x}{\left(4-4 e^{\left(x^{2}-1\right)}\right)^{1 / 2}}$ units of time. This evaluates numerically to about 1.772 but can be proved to be finite without much trouble: the integral is improper at the endpoints, but we can get a series expansion for its behaviour at $x=1-\varepsilon$: the exponential is approximately $1-2 \varepsilon$, and the entire denominator is approximately $\sqrt{8 \varepsilon}$. In particular, the integral over a small interval $(1-\varepsilon, 1]$ is approximately $\sqrt{\varepsilon / 2}$ and in particular stays bounded.
4. Find a solution $u(x, t)$ valid for all x in $[0, \pi]$ and all $t \geq 0$ to

$$
\frac{\partial^{2} u}{\partial t^{2}}+2 \frac{\partial u}{\partial t}=2 \frac{\partial^{2} u}{\partial x^{2}}
$$

with boundary conditions $u(0, t)=u(\pi, t)=0$ for all $t \geq 0$ and initial conditions $u(x, 0)=0$ and $\frac{\partial u}{\partial t}(x, 0)=14 \sin (5 x)$ for all $x \in[0, \pi]$.

ANSWER: We use Separation of Variables, looking for solutions of the form $u(x, t)=$ $X(x) T(t)$ for some functions X and T of one variable each. Such a product solves the differential equation iff $X T^{\prime \prime}+2 X T^{\prime}=2 X^{\prime \prime} T$; dividing by u then shows $\left(T^{\prime \prime}+2 T^{\prime}\right) / T=$ $2 X^{\prime \prime} / X$, which must be a constant k (since the left side shows it is independent of x and the right side shows it is independent of t, too). So the data of the problem stipulate that

$$
T^{\prime \prime}+2 T^{\prime}=k T, 2 X^{\prime \prime}=k X, X(0)=X(\pi)=0, T(0)=0, X(x) T^{\prime}(0)=14 \sin (5 x)
$$

The last equation dictates that X be a multiple of $\sin (5 x)$, and hence $k=-50$. Then all the conditions are met except for $T^{\prime \prime}+2 T^{\prime}+50 T=0$ and $T(0)=0$. (We will choose the multiplier in X to be $14 / T^{\prime}(0)$.)

The polynomial $r^{2}+2 r+50$ has roots $r=-1 \pm 7 i$, so the solutions of the linear equation in T are the linear combinations of $e^{-t} \sin (7 t)$ and $e^{-t} \cos (t)$; the initial condition $T(0)=0$ allows only multiples of the former. Thus $T(t)=A e^{-t} \sin (7 t)$ for some A, giving $T^{\prime}(0)=$ $7 A$; then $X(x)=(2 / A) \sin (5 x)$ and finally $u(x, t)=X(x) T(t)=2 e^{-t} \sin (7 t) \sin (5 x)$.
5. Solve the system

$$
x^{\prime}(t)+2 y^{\prime}(t)=8 x(t)+14 y(t) \quad x^{\prime}(t)+y^{\prime}(t)=-7 x(t)-13 y(t) \quad x(0)=13, y(0)=-8
$$

ANSWER: We may write the given in formation as $A X^{\prime}(t)=B X(t)$ where $X(t)=$ $\binom{x(t)}{y(t)}$ and A and B are the matrices $A=\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}8 & 14 \\ -7 & -13\end{array}\right)$. This is equivalent to the simpler system $X^{\prime}(t)=C X(t)$ where $C=A^{-1} B=\left(\begin{array}{cc}-22 & -40 \\ 15 & 27\end{array}\right)$.

Now it is helpful to diagonalize the matrix C. We first find the characteristic polynomial $\operatorname{det}(C-x I)$ which works out to be $x^{2}-5 x+6=(x-2)(x-3)$, so the eigenvalues are +2 and +3 . To get some eigenvectors, look for the kernels of $C-2 I$ and $C-3 I$; I find them to be the spans of $(5,-3)$ and $(-8,5)$ respectively, from which I construct the matrix $P=\left(\begin{array}{cc}5 & -8 \\ -3 & 5\end{array}\right)$; general matrix theory predicts that we should have $C=P D P^{-1}$ where D is the diagonal matrix $\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$ and you may check that this is the case.

Thus our matrix equation $X^{\prime}(t)=C X(t)$ may be written $X^{\prime}(t)=P D P^{-1} X$, or $\left(P^{-1} X\right)^{\prime}=D\left(P^{-1} X\right)$. So the entries of the column vector $Y(t)=P^{-1} X(t)$ must be multiples of $e^{2 t}$ and $e^{3 t}$ respectively. This gives us the general solution $X(t)=P\binom{c_{2} e^{2 t}}{c_{3} e^{3 t}}$. Our particular solution has $X(0)=\binom{13}{-8}$ so $Y(0)=P^{-1}\binom{13}{-8}=\binom{1}{-1}$ and thus

$$
\binom{x(t)}{y(t)}=X(t)=P\binom{e^{2 t}}{-e^{3 t}}=\binom{5 e^{2 t}+8 e^{3 t}}{-3 e^{2 t}-5 e^{3 t}}
$$

