
BENNETT DIFFERENTIAL EQUATION PRIZE EXAM May 11 2021

Submit your solutions with all work shown, by 8pm (Austin time) as an email

attachment to rusin@math.utexas.edu. During the exam you must abide the

rules previously sent via email.

1. Two functions f and g are said to be inverses of each other if f(g(t)) = t for every

t in some interval, and g(f(u)) = u for every u in another interval. For example

the logarithm and exponential functions are inverses of each other, as are the cosine

function and any branch of the arc-cosine function.

Find a differentiable function f for which f and f ′ are inverses of each other.

ANSWER: We need a function whose derivative is also its inverse. We might look in

a family of functions that is closed under both operations of differentiation and inversion;

one such family is the set of power functions f(x) = AxB . Such a function has derivative

A2x
B2 and inverse A3x

B3 where A2 = (AB), B2 = (B − 1), A3 = A−1/B , andB3 = 1/B.

So we simply need numbers A,B for which AB = A−1/B and B − 1 = 1/B. The lat-

ter condition is satisfied iff B2 − B − 1 = 0, whose roots are the Golden Ratio φ =

(1 +
√

5)/2 and its negative reciprocal φ̄ = (1 −
√

5)/2. In either case we additionally

need A1+(1/B) = 1/B, which simplifies to A = (1/B)1/B . Numerically, our function is

approximately 0.7427429447x1.618033988.

2. Find the general solution of yy′′ + (y′)2 = 5(y′)3

ANSWER: This equation is second-order autonomous, so we can reduce the order

with the substitution v = y′, since then y′′ = v′ = v dv
dy and the original equation implies

y v dv
dy + v2 = 5v3. This equation holds if v = 0, i.e. if y is any constant; otherwise we have

dv
dy + 1

yv = 5
yv

2. This is now a Bernoulli differential equation (with exponent 2), which

we can solve by dividing by v2, to get an equation which is first-order linear in u = v−1.

Indeed, we have du/dy = −v−2 dv/dy = 1
yv
−1 − 5

y = 1
yu −

5
y . Now we use an integrating

factor of 1/y to get
d(u/y)

dy
= −5/y2 =

d

dy
(5/y)

so that u/y = 5/y + C for some C. Solve for u and recall v = 1/u = 1/(5 + Cy). But

v = dy/dx so we end up with a separable differential equation in x and y: (5+Cy)dy = dx



The general solution is x = 5y + (C/2)y2 + C ′ . When C = 0 we get the solutions

y = 1
5 (x− x0) for arbitrary constant x0; otherwise we may use the Quadratic Formula to

get solutions which may be written

y =
−5±

√
2c(x− x0)

c

with arbitrary x0 and nonzero c. (I am writing the solutions in terms of x− x0 since the

original equations were independent of x.)

3. An object moves along the real number line; its position x(t) at time t satisfies

x′′(t) + 4x(t) = x(t) (x′(t))2

Show that if x(0) = 1 and x′(0) = 0 then the object follows a periodic trajectory, but

that some other initial conditions do not lead to oscillation.

ANSWER: If we let v = dx/dt be the object’s velocity, then we may trace the

object’s movement in phase space as it traces a trajectory (x(t), v(t)), starting at the point

(1, 0). From the first-order system

dx

dt
= v

dv

dt
= x(v2 − 4)

we can determine whether this trajectory heads upwards or downwards, to the left or

to the right. For example, the trajectory heads roughly southwest from points where

x > 0 and v > 2. Clearly the lines v = ±2 are trajectories themselves (they correspond

to the solutions x(t) = ±2t + x0 of the original equation); the origin x = v = 0 is

the trajectory corresponding to the solution x(t) = 0. We can determine the shape of

the other trajectories from their slopes dv/dx at each point; with the Chain Rule, the

differential equations imply dv/dx = x(v2− 4)/v. This is a separable differential equation:

from 2v dv/(v2 − 4) = 2x dx we deduce that log(|v2 − 4|) = x2 − C, i.e. v2 − 4 = Aex
2

for

some constant A (depending on the trajectory). Note in particular that this allows at most

two values of x for each value of v and vice versa; thus if the object should ever return

to a position x it has been in twice before, it must surely repeat the very same motions,

that is, x(t) = x(t − T ) for some time interval T . In simple terms: the trajectories that

appear to spiral must in fact form closed loops. This applies to all trajectories that start



(and must therefore stay) between the trajectories v = 2 and v = −2, including ours which

starts with v = 0.

It is a subtle point is whether or not this T really exists: we must decide whether,

in a finite amount of time, the object can actually complete the entire loop around phase

space, or whether instead it slows and asymptotically approaches some point on the loop,

as t→∞. (The point would necessarily have to have a v coordinate of 0.) We can compute

the amount of time needed to follow a trajectory from one point (x0, v0) to another. For

simplicity, let us consider the case that both vi > 0 . Then as time flows, we will follow

the curve v =
√

4 +Aex2 . Since v = dx/dt, we can solve the original differential equation

by solving the separable equation dt = dx/
√

4 +Aex2 . Hence the time needed to follow

that portion of the curve is given by

t1 − t0 =

∫ x1

x0

dx(
4 +Aex2

)1/2
The particular trajectory proposed in the question starts at (x0, v0) = (1, 0), which re-

quires A = −4/e, so the object will make it to the opposite extreme position x1 = −1

in
∫ 1

−1
dx

(4−4e(x2−1))1/2
units of time. This evaluates numerically to about 1.772 but can be

proved to be finite without much trouble: the integral is improper at the endpoints, but we

can get a series expansion for its behaviour at x = 1− ε: the exponential is approximately

1− 2ε, and the entire denominator is approximately
√

8ε. In particular, the integral over

a small interval (1− ε, 1] is approximately
√
ε/2 and in particular stays bounded.

4. Find a solution u(x, t) valid for all x in [0, π] and all t ≥ 0 to

∂2u

∂t2
+ 2

∂u

∂t
= 2

∂2u

∂x2

with boundary conditions u(0, t) = u(π, t) = 0 for all t ≥ 0 and initial conditions

u(x, 0) = 0 and ∂u
∂t (x, 0) = 14 sin(5x) for all x ∈ [0, π].

ANSWER: We use Separation of Variables, looking for solutions of the form u(x, t) =

X(x)T (t) for some functions X and T of one variable each. Such a product solves the

differential equation iff XT ′′ + 2XT ′ = 2X ′′T ; dividing by u then shows (T ′′ + 2T ′)/T =

2X ′′/X, which must be a constant k (since the left side shows it is independent of x and

the right side shows it is independent of t, too). So the data of the problem stipulate that

T ′′ + 2T ′ = kT, 2X ′′ = kX, X(0) = X(π) = 0, T (0) = 0, X(x)T ′(0) = 14 sin(5x)



The last equation dictates that X be a multiple of sin(5x), and hence k = −50. Then all

the conditions are met except for T ′′ + 2T ′ + 50T = 0 and T (0) = 0. (We will choose the

multiplier in X to be 14/T ′(0).)

The polynomial r2+2r+50 has roots r = −1±7i, so the solutions of the linear equation

in T are the linear combinations of e−t sin(7t) and e−t cos(t); the initial condition T (0) = 0

allows only multiples of the former. Thus T (t) = Ae−t sin(7t) for some A, giving T ′(0) =

7A; then X(x) = (2/A) sin(5x) and finally u(x, t) = X(x)T (t) = 2e−t sin(7t) sin(5x).

5. Solve the system

x′(t)+2y′(t) = 8x(t)+14y(t) x′(t)+y′(t) = −7x(t)−13y(t) x(0) = 13, y(0) = −8

ANSWER: We may write the given in formation as AX ′(t) = BX(t) where X(t) =(
x(t)
y(t)

)
and A and B are the matrices A =

(
1 2
1 1

)
and B =

(
8 14
−7 −13

)
. This is

equivalent to the simpler system X ′(t) = C X(t) where C = A−1B =

(
−22 −40
15 27

)
.

Now it is helpful to diagonalize the matrix C. We first find the characteristic polyno-

mial det(C − xI) which works out to be x2 − 5x + 6 = (x − 2)(x − 3), so the eigenvalues

are +2 and +3. To get some eigenvectors, look for the kernels of C− 2I and C− 3I; I find

them to be the spans of (5,−3) and (−8, 5) respectively, from which I construct the matrix

P =

(
5 −8
−3 5

)
; general matrix theory predicts that we should have C = P DP−1 where

D is the diagonal matrix

(
2 0
0 3

)
and you may check that this is the case.

Thus our matrix equation X ′(t) = CX(t) may be written X ′(t) = PDP−1X, or

(P−1X)′ = D(P−1X). So the entries of the column vector Y (t) = P−1X(t) must be

multiples of e2t and e3t respectively. This gives us the general solution X(t) = P

(
c2e

2t

c3e
3t

)
.

Our particular solution has X(0) =

(
13
−8

)
so Y (0) = P−1

(
13
−8

)
=

(
1
−1

)
and thus

(
x(t)
y(t)

)
= X(t) = P

(
e2t

−e3t
)

=

(
5e2t + 8e3t

−3e2t − 5e3t

)


