BENNETT DIFFERENTIAL EQUATION PRIZE EXAM May 112021

Submit your solutions with all work shown, by 8pm (Austin time) as an email attachment to rusin@math.utexas.edu. During the exam you must abide the rules previously sent via email.

1. Two functions f and g are said to be inverses of each other if $f(g(t))=t$ for every t in some interval, and $g(f(u))=u$ for every u in another interval. For example the logarithm and exponential functions are inverses of each other, as are the cosine function and any branch of the arc-cosine function.

Find a differentiable function f for which f and f^{\prime} are inverses of each other.
2. Find the general solution of $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=5\left(y^{\prime}\right)^{3}$
3. An object moves along the real number line; its position $x(t)$ at time t satisfies

$$
x^{\prime \prime}(t)+4 x(t)=x(t)\left(x^{\prime}(t)\right)^{2}
$$

Show that if $x(0)=1$ and $x^{\prime}(0)=0$ then the object follows an oscillating trajectory, but that some other initial conditions do not lead to oscillation.
4. Find a solution $u(x, t)$ valid for all x in $[0, \pi]$ and all $t \geq 0$ to

$$
\frac{\partial^{2} u}{\partial t^{2}}+2 \frac{\partial u}{\partial t}=2 \frac{\partial^{2} u}{\partial x^{2}}
$$

with boundary conditions $u(0, t)=u(\pi, t)=0$ for all $t \geq 0$ and initial conditions $u(x, 0)=0$ and $\frac{\partial u}{\partial t}(x, 0)=14 \sin (5 x)$ for all $x \in[0, \pi]$.
5. Solve the system

$$
x^{\prime}(t)+2 y^{\prime}(t)=8 x(t)+14 y(t) \quad x^{\prime}(t)+y^{\prime}(t)=-7 x(t)-13 y(t) \quad x(0)=13, y(0)=-8
$$

Answers will soon appear at http://www.math.utexas.edu/users/rusin/Bennett/ .

