Name: \qquad UT EID:
Linear Algebra Course: When? \qquad Instructor: \qquad
Permanent Mailing Address: \qquad

E-mail address:

College (Natural Sciences, Engineering, etc.)
Submit your solutions on the sheets provided, with your name on each sheet. No calculators allowed. You must justify your claims.

1. Let V be the set of functions of the form $f(x)=p(x) e^{-x}$ where $p(x)$ is a polynomial of degree at most 4. Note that the derivative $D(f)=f^{\prime}$ of every element of V is also a member of V. Find a basis \mathcal{B} of V, and then find the matrix representation of D with respect to this basis. Is there another basis for which the matrix representing D is a diagonal matrix?
2. Suppose u and v are vectors in \mathbf{R}^{3} and that we know these lengths: $\|u\|=3,\|u+v\|=$ 4 , and $\|u-v\|=6$. What is the length $\|v\|$ of the vector v ?
3. Suppose A is a 2×2 matrix which satisfies $A^{3}=A$. Show that A^{2} must be equal to one (or more) of $0, I, A$, or $-A$.
4. Recall that the trace $\operatorname{Tr}(M)$ of a real, $n \times n$ matrix M is the sum of the diagonal entries of M.
(a) Find such a matrix B for which $\operatorname{Tr}\left(B^{2}\right)<0$
(b) Show that if C is symmetric then $\operatorname{Tr}\left(C^{2}\right) \geq 0$
(c) Show that if M has n distinct real eigenvalues then $\operatorname{Tr}\left(M^{2}\right) \geq 0$
5. Find the rank, and a basis for the null space ($=$ kernel) , of the $n \times n$ matrix M whose (i, j) entry is $M_{i j}=(i+j-2)^{2}$. For example, for $n=4$ the matrix M is

$$
\left(\begin{array}{cccc}
0 & 1 & 4 & 9 \\
1 & 4 & 9 & 16 \\
4 & 9 & 16 & 25 \\
9 & 16 & 25 & 36
\end{array}\right)
$$

Answers will soon appear at http://www.math.utexas.edu/users/rusin/Bennett/

