BENNETT LINEAR ALGEBRA PRIZE EXAM Dec 07 2021

Name:	UT E	EID:	
Linear Algebra Course: Permanent Mailing Address:	When?	Instructor:	
E-mail address:			

College (Natural Sciences, Engineering, etc.)_

Submit your solutions on the sheets provided, with your name on each sheet. No calculators allowed. You must justify your claims.

- 1. Let V be the set of functions of the form $f(x) = p(x) e^{-x}$ where p(x) is a polynomial of degree at most 4. Note that the derivative D(f) = f' of every element of V is also a member of V. Find a basis \mathcal{B} of V, and then find the matrix representation of D with respect to this basis. Is there another basis for which the matrix representing D is a diagonal matrix?
- 2. Suppose u and v are vectors in \mathbb{R}^3 and that we know these lengths: ||u|| = 3, ||u+v|| = 4, and ||u-v|| = 6. What is the length ||v|| of the vector v?
- **3.** Suppose A is a 2×2 matrix which satisfies $A^3 = A$. Show that A^2 must be equal to one (or more) of 0, I, A, or -A.
- **4.** Recall that the *trace* Tr(M) of a real, $n \times n$ matrix M is the sum of the diagonal entries of M.
 - (a) Find such a matrix B for which $Tr(B^2) < 0$
 - (b) Show that if C is symmetric then $\operatorname{Tr}(C^2) \ge 0$
 - (c) Show that if M has n distinct real eigenvalues then $Tr(M^2) \ge 0$
- 5. Find the rank, and a basis for the null space (=kernel), of the $n \times n$ matrix M whose (i, j) entry is $M_{ij} = (i + j 2)^2$. For example, for n = 4 the matrix M is

$$\begin{pmatrix} 0 & 1 & 4 & 9 \\ 1 & 4 & 9 & 16 \\ 4 & 9 & 16 & 25 \\ 9 & 16 & 25 & 36 \end{pmatrix}$$

Answers will soon appear at http://www.math.utexas.edu/users/rusin/Bennett/