1. (20 pts.) Compute the following limits
(i) $\lim _{n \rightarrow \infty}\left(1-\frac{2}{n}\right)^{3 n}$
(ii) $\lim _{x \rightarrow 0} x^{-1} \int_{3}^{3+x} \cos \left(\pi y^{2}\right) d y$
(iii) $\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{3^{k}}{k!}$
(iv) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{k \pi}{n^{2}} \sin \left(\frac{k \pi}{n}\right)$
(v) $\lim _{x \rightarrow \infty} x\left(1-e^{-(1 / x)}\right)$

ANSWER:

(i) Exponentiation of real numbers a^{b} (with $a>0$) may be written as $e^{b \ln (a)}$; since the exponential and logarithm functions are continuous we can then compute $\lim a^{b}$ as $e^{\lim (b \ln a)}$. In our case this requires that we compute $\lim _{n \rightarrow \infty} 3 n \ln (1-(2 / n))$. We may substitute $n=1 / u$; then we need the limit as $u \rightarrow 0^{+}$of $3 \ln (1-2 u) / u$. With one application of L'Hôptial's Rule this limit is seen to be -6 . So the original limit evaluates to e^{-6}.
(ii) Writing this as $\lim _{x \rightarrow 0} \frac{F(x)}{x}$ we see that this again may be computed using L'Hôptial's Rule (since clearly the integral $F(x)$ will vanish when $x=0$). But $F^{\prime}(x)=\cos \left(\pi(3+x)^{2}\right)$ by the Fundamental Theorem of Calculus, so the limit involved in L'Hôptial's Rule is simply $\cos (9 \pi)=-1$.
(iii) This is the limit of the partial sums of an infinite series $\sum_{k \geq 0} 3^{k} / k$!. But we recognize this as the Taylor series of the exponential function, evaluated at $x=3$. Hence the value of this limit is e^{3}.
(iv) This may be written $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} F\left(x_{k}\right) \Delta x$, where $F(x)=\frac{1}{\pi} x \sin (x), x_{k}=k \pi / n$, and $\Delta x=x_{k}-x_{k-1}$ (which is π / n). But such a sum is a Riemann sum associated to the integral $\int_{0}^{\pi} F(x) d x$, using the right-end end points to represent each of the n subintervals into which the interval $[0, \pi]$ has been divided. Since the limit of the Riemann
sum defines the value of the integral, our limit is $\int_{0}^{\pi} F(x) d x=\frac{1}{\pi} \int_{0}^{\pi} x \sin (x) d x$. We evaluate an antiderivative using Integration By Parts, to get $-x \cos (x)+\sin (x)+C$; using the Fundamental Theorem of Calculus the value of the integral is π and so the original limit is 1 .
(v) As in the first limit we substitute $u=1 / x$ to get $\lim _{u \rightarrow 0^{+}}\left(1-e^{-u}\right) / u$ and then use L'Hôpital's Rule to see the limit equals 1 .
2. (10 pts.) A perfectly spherical apple of radius 3 centimeters is centered at the origin. A worm crawls along the x-axis, eating every bit of the apple whose distance from the x-axis is less than 1 centimeter. Find the volume of the remaining uneaten portion of the apple.

ANSWER: We can calculate the volume with the "method of washers", that is, the volume is the integral $\int_{-3}^{3} A(x) d x$ of the cross-sectional area of portion that the worm did not eat of the slice of the apple at a given x coordinate. Note that $A(x)=0$ when x is close to ± 3; in fact the worm eats the entirety of the slice unless $|x| \leq \sqrt{8}$. Then, for x in this interval, the uneaten portion is an annulus (a "washer") whose inner radius is always 1 cm and whose outer radius is $\sqrt{9-x^{2}}$. Thus the area $A(x)$ of the uneaten slice is $\pi\left(9-x^{2}\right)-\pi \mathrm{cm}^{2}$. It follows that the volume of the uneaten portion is

$$
\pi \int_{-\sqrt{8}}^{\sqrt{8}}\left(8-x^{2}\right) d x=\frac{64 \sqrt{2} \pi}{3} \mathrm{~cm}^{3}
$$

The volume can also be computed by the method of cylindrical shells.
3. (10 pts.) Compute $\int_{0}^{\infty} \frac{1}{\left(1+x^{2}\right)^{3}} d x$.

ANSWER: This is an improper integral, so we must compute an antiderivate and study its endpoint behaviour. Using the substitution $x=\tan (\theta)$ the integral becomes $\int \cos ^{4}(\theta) d \theta$, which we evaluate with the customary trigonometric idenities:

$$
\begin{aligned}
\cos (\theta)^{4} & =\frac{1}{4}(1+\cos (2 \theta))^{2} \\
& =\frac{1}{4}\left(1+2 \cos (2 \theta)+\frac{1+\cos (4 \theta)}{2}\right) \\
& =\frac{1}{32}(12 \theta+8 \sin (2 \theta)+\sin (4 \theta))
\end{aligned}
$$

With several applications of the double-angle formulas, this may be written

$$
\frac{1}{8}\left(3 \theta+4 \cos (\theta) \sin (\theta)+2 \cot ^{2}(\theta) \sin (\theta)\right)
$$

Substituting back $\sin (\theta)=x / \sqrt{1+x^{2}}$ and $\cos (\theta)=1 / \sqrt{1+x^{2}}$ gives

$$
\int \frac{1}{\left(1+x^{2}\right)^{3}} d x=\frac{1}{8}\left(3 \arctan (x)+\frac{3 x}{1+x^{2}}+\frac{2 x}{\left(1+x^{2}\right)^{3}}\right)
$$

Taking now the integral over any interval $[0, T]$ and letting $T \rightarrow+\infty$ gives the value of the integral as $3 \pi / 16$.
4. (10 pts.) Line L is the intersection of the planes $2 x+2 y+z=4$ and $x-y-z=1$. There are two spheres of radius 3 which pass through the origin and whose centers lie on L. Find the equations of the spheres.

ANSWER: It is easier to use a parametric description of this line. The normal vectors of the two planes are $\langle 2,2,1\rangle$ and $\langle 1,-1,-1\rangle$ respectively; the cross product of these two vectors, namely $\langle 1,-3,4\rangle$, is then parallel to both the planes and hence to their intersection, the line L. Pick any point on the line (say, $(1,2,-2)$) and add multiples of this vector to it to get a parameterization:

$$
L=\{(1+t, 2-3 t,-2+4 t) \mid t \in \mathbf{R}\}
$$

So now we need only to find the values of t for which a sphere of radius 3 with such a center passes through the origin, that is, the values of t for which this point is three units away from $(0,0,0)$. Clearly this happens iff $(1+t)^{2}+(2-3 t)^{2}+(-2+4 t)^{2}=9$. That's a quadratic equation with roots $t=0$ and $t=1$. So the two good centers on L are $(1,2,-2)$ and $(2,-1,2)$ (which obviously are indeed a distance of 3 from the origin). Then the spheres are give by the equations

$$
(x-1)^{2}+(y-2)^{2}+(z+2)^{2}=9 \quad \text { and } \quad(x-2)^{2}+(y+1)^{2}+(z-2)^{2}=9
$$

