Name:
Present Calculus Course: \qquad
UT EID: \qquad

Permanent Mailing Address: \qquad

E-mail address: \qquad
School (Natural Sciences, Engineering, etc.)
Show all work in your solutions; turn in your solutions on the sheets provided. (Suggestion: Do preliminary work on scratch paper that you don't turn in; write up final solutions neatly and in order; write your name on all pages turned in.)

1. (20 pts.) Compute the following limits
(i) $\lim _{n \rightarrow \infty}\left(1-\frac{2}{n}\right)^{3 n}$
(ii) $\lim _{x \rightarrow 0} x^{-1} \int_{3}^{3+x} \cos \left(\pi y^{2}\right) d y$
(iii) $\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{3^{k}}{k!}$
(iv) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{k \pi}{n^{2}} \sin \left(\frac{k \pi}{n}\right)$
(v) $\lim _{x \rightarrow \infty} x\left(1-e^{-(1 / x)}\right)$
2. (10 pts.) A perfectly spherical apple of radius 3 centimeters is centered at the origin. A worm crawls along the x-axis, eating every bit of the apple whose distance from the x-axis is less than 1 centimeter. Find the volume of the remaining uneaten portion of the apple.
3. (10 pts.) Compute $\int_{0}^{\infty} \frac{1}{\left(1+x^{2}\right)^{3}} d x$.
4. (10 pts.) Line L is the intersection of the planes $2 x+2 y+z=4$ and $x-y-z=1$. There are two spheres of radius 3 which pass through the origin and whose centers lie on L. Find the equations of the spheres.
