Name:
Present Calculus Course: \qquad
UT EID:
Instructor: \qquad
Permanent Mailing Address: \qquad

E-mail address:

School (Natural Sciences, Engineering, etc.)
Show all work in your solutions; turn in your solutions on the sheets provided. (Suggestion: Do preliminary work on scratch paper that you don't turn in; write up final solutions neatly and in order; write your name on all pages turned in.)

1. Let T be the triangle in the $x y$-plane whose vertices are $(1,2),(3,3)$, and $(2,5)$. Find the volume of the solid object obtained by rotating T about the y-axis.
2. Find the sum of each of the following series for $|x|<1$.
(a) $\sum_{n=1}^{\infty} n x^{n+1}$
(b) $\sum_{n=2}^{\infty} n(n-1) x^{2 n}$
3. Suppose that $f(x)$ and $g(x)$ are 3-times differentiable functions for all x. Let $h(x)=$ $g(f(x))$. Suppose that $f^{\prime}(0)=f^{\prime \prime}(0)=f^{\prime \prime \prime}(0)=0$. Show that $h^{\prime}(0)=h^{\prime \prime}(0)=$ $h^{\prime \prime \prime}(0)=0$.
4. Find the equation of the plane which contains the points $(1,0,0)$ and $(0,0,1)$ and is tangent to the curve $(x, y, z)=\left(2, t, 2 t^{2}\right)$ at some point. (There are actually two such planes. Find them both.)
5. Let $f(x)=x^{2} \sin (\pi / x)$. Show that there are infinitely many values of x between 0 and 1 such that $f^{\prime}(x)=0$.
