Name:
Present Calculus Course: \qquad
UT EID: \qquad

Permanent Mailing Address: \qquad

E-mail address:
School (Natural Sciences, Engineering, etc.)
Show all work in your solutions; turn in your solutions on the sheets provided. (Suggestion: Do preliminary work on scratch paper that you don't turn in; write up final solutions neatly and in order; write your name on all pages turned in.)

1. Find the sums of each of the following series. Simplify your answers.
(i) $\sum_{n=0}^{\infty}\left(\frac{x-1}{x}\right)^{n}$ where $x>1$
(ii) $\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(\tan ^{-1}(x)\right)^{2 n}}{(2 n)!}$
2. Compute the following limits
(i) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{k^{3}}{n^{4}} \cos \left(\pi \frac{k^{2}}{n^{2}}\right)$
(ii) $\lim _{n \rightarrow \infty} n \int_{2}^{2+3 \sin (1 / n)} x^{-2} e^{x} d x$
3. Compute the indefinite integral

$$
\int \frac{1}{1-x^{1 / 5}} d x
$$

4. Find the volume of the solid torus (donut) obtained by rotating the unit disc $x^{2}+y^{2} \leq 1$ about the line $x+y=6$.
5. There are 4 lines which are tangent to both of the circles $x^{2}+(y-3)^{2}=1$ and $x^{2}+(y+5)^{2}=4$. Find the equation of one of the lines.
