ALBERT A. BENNETT CALCULUS PRIZE EXAM 12/6/09

Name:	UT EID:
Present Calculus Course:	Instructor:
Permanent Mailing Address:	
E-mail address:	
School (Natural Sciences, Engineering, etc.)	

Show all work in your solutions; turn in your solutions on the sheets provided. (Suggestion: Do preliminary work on scratch paper that you don't turn in; write up final solutions neatly and in order; write your name on all pages turned in.)

1. Find the sums of each of the following series. Simplify your answers.

(i)
$$\sum_{n=0}^{\infty} \left(\frac{x-1}{x}\right)^n$$
 where $x > 1$
(ii) $\sum_{n=0}^{\infty} (-1)^n \frac{(\tan^{-1}(x))^{2n}}{(2n)!}$

2. Compute the following limits

(i)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k^3}{n^4} \cos\left(\pi \frac{k^2}{n^2}\right)$$

(ii)
$$\lim_{n \to \infty} n \int_2^{2+3\sin(1/n)} x^{-2} e^x \, dx$$

3. Compute the indefinite integral

$$\int \frac{1}{1-x^{1/5}} \, dx$$

- 4. Find the volume of the solid torus (donut) obtained by rotating the unit disc $x^2 + y^2 \le 1$ about the line x + y = 6.
- 5. There are 4 lines which are tangent to both of the circles $x^2 + (y-3)^2 = 1$ and $x^2 + (y+5)^2 = 4$. Find the equation of one of the lines.