
Here are some possible answers to the questions on the
Albert A. Bennett Calculus Prize Exam — Dec 5 2010

Note: It is quite possible that the same answers can be obtained by other methods. Indeed,
creative means to derive correct answers are valued in mathematics generally and in this
contest in particular.

This version corrects a small error in problem 4.

1. Evaluate lim
x→∞

√
x3 − x2 + 3x√

x3 −
√
x2 +

√
3x

.

Solution: Dividing top and bottom by
√
x3 we get lim

x→∞

√
1− x−1 + 3x−2

1−
√
x−1 +

√
3x−2

. Both

numerator and denominator now tend to 1, and so does the function.
Remark: This question was lifted from a 1998 Foxtrot cartoon :-)

2. Determine whether these series converge or diverge.

(a)
∞∑
n=2

n8 − 1

n9 − 1

Solution: We may use the Limit Comparison test with the Harmonic series:

lim
n→∞

(n8 − 1)/(n9 − 1)

(1/n)
= lim
n→∞

(n9 − n)/(n9 − 1) = lim
n→∞

(1− n−8)/(1− n−9) = 1

so since
∑∞
n=2

1
n diverges, so does our series.

(b)
∞∑
n=2

1

ln(n!)

Solution: Since n! is the product of n integers no larger than n, we have n! < nn.
Therefore ln(n!) < n lnn and so the series dominates

∑∞
n=2

1
n ln(n) . But this latter series

is easily seen to diverge, using the integral test:∫ T

2

1

x ln(x)
dx = ln(ln(x))

∣∣∣∣T
2

and so as T →∞, the integral diverges.
Remark: This question appeared on an old Putnam Exam!

3. Compute lim
x→0

cos(2x) + 2 sin(x2)− 1

x4
.

Solution: We can compute the Taylor series of the numerator as far as the x4 term
by recalling that sin(x) = x − x3/3 + . . . and cos(x) = 1 − x2/2 + x4/24 + . . .. Thus the
numerator has a Taylor expansion of (1 − 2x2 + (2/3)x4 + . . .) + (2x2 − x6/3 + . . .) − 1
which is (2/3)x4 + . . .. Divide by x4 and let x→ 0 to get a limit of 2/3.



Remark: You may certainly use four iterations of L’Hopital’s Rule — if you have the
patience and algebraic skill . . .

4. The four points A = (−6,−2, 3), B = (−6, 8, 3), C = (−7, 5, 3), D = (4,−6, 5), are all
equally far from a point P . Find P .

Solution: P will lie on the plane of points equidistant from any pair. For example, the
points equidistant from A and B lie on a plane perpendicular to vector AB = 〈0, 10, 0〉 and
pass through the midpoint (A+B)/2 = (0, 3, 0). This plane is of the form 0x+10y+0z = c
where necessarily c = 30. Likewise the plane equidistant from B and C is found to be
x+ 3y = 13 and the plane equidistant from C and D is 11x− 11y+ 2z = −3. So the point
P is the intersection of these three planes, i.e. the solution to a system of 3 equations in 3
unknowns: x = 4, y = 3, z = −7. (P = (4, 3,−7) is of distance 15 from each of A,B,C,D.)

Remark: It is also natural to begin with three equations in the three unknown coor-
dinates x, y, z of P : equations which say

dist(P,A) = dist(P,B) = dist(P,C) = dist(P,D).

Square each and subtract x2 + y2 + z2 from all sides to get the same three linear equations
shown above.

5. Compute the minimum value of the function

f(u, v) =

(
u− v

)2

+

(
(3− u)−

(
5

v

))2

on the region where v > 0.

Solution: The function measures the square of the distance between the two points
P = (u, 3 − u) and Q = (v, 5v ). The former is a point on the line x + y = 3 and the
latter is a point (in the first quadrant) on the hyperbola xy = 5, so all we want to know is
the minimum distance between these two curves. By symmetry, or a glance at the graph,
it is clear that the points of closest approach are on the line y = x, which then must
clearly be the points are P = (3/2, 3/2) and Q = (

√
5,
√

5), so the value of the function is√
2(
√

5− 3/2).
Remark: The problem can also be treated as an unconstrained minimization problem

by setting ∂f
∂x and ∂f

∂y both equal to zero. The algebra is rather messy, though.
Moreover, this problem may be treated as a constrained minimization problem: we

wish to minimize (u − v)2 + (U − V )2 subject to the constraints u + U = 3 and vV = 5.
With the obvious choice of notation we then let F = F0 − λ1F1 − λ2F2; the optimal point
must satisfy Fu = FU = Fv = FV = Fλ1 = Fλ2 = 0 — six equations to solve for the six
unknowns u, U, v, V, λ1, λ2. The equations are fairly simple and may be solved easily to
get the points P and Q noted above.

This was adapted from Putnam Exam question B4, 1976


