Name: \qquad UT EID: \qquad
Present Calculus Course: \qquad

Instructor:

\qquad
Permanent Mailing Address: \qquad

E-mail address: \qquad
School (Natural Sciences, Engineering, etc.) \qquad
Show all work in your solutions; turn in your solutions on the sheets provided. (Suggestion: Do preliminary work on scratch paper that you don't turn in; write up final solutions neatly and in order; write your name on all pages turned in.)

1. Evaluate $\lim _{x \rightarrow \infty} \frac{\sqrt{x^{3}-x^{2}+3 x}}{\sqrt{x^{3}}-\sqrt{x^{2}}+\sqrt{3 x}}$.
2. Determine whether these series converge or diverge. (Be sure to justify your answer.)

$$
\begin{array}{ll}
\text { (a) } \sum_{n=2}^{\infty} \frac{n^{8}-1}{n^{9}-1} \quad \text { (b) } \sum_{n=2}^{\infty} \frac{1}{\ln (n!)}
\end{array}
$$

3. Compute $\lim _{x \rightarrow 0} \frac{\cos (2 x)+2 \sin \left(x^{2}\right)-1}{x^{4}}$.
4. The four points

$$
A=(-6,-2,3), \quad B=(-6,8,3), \quad C=(-7,5,3), \quad D=(4,-6,5)
$$

are all equally far from a point P. Find P.
5. Compute the minimum value of the function

$$
f(u, v)=(u-v)^{2}+\left((3-u)-\left(\frac{5}{v}\right)\right)^{2}
$$

on the region where $v>0$.

