ALBERT A. BENNETT CALCULUS PRIZE EXAM - Dec 42011
Here are some possible responses to this semester's Bennett exam.

1. Let $f(x)=e^{-x} \sin \left(x^{3}\right) / x$ and $g(x)=\ln \left(1+e^{-x}\right)$. Compute

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}
$$

Answer: The quotient is $\frac{\sin \left(x^{3}\right)}{x} \cdot \frac{e^{-x}}{\ln \left(1+e^{-x}\right)}$. The first factor tends to zero because the numerator is never more than 1 (the "Squeeze Theorem"). The second factor tends to 1: as $x \rightarrow \infty, u=e^{-x} \rightarrow 0$, but as $u \rightarrow 0, u / \ln (1+u) \rightarrow 0$ (as can be checked easily with L'Hôpital's Rule, for example). Thus the original limit is zero.

Note: Both f and g tend to zero, but L'Hôpital's Rule is not helpful if applied directly:

$$
f^{\prime}(x) / g^{\prime}(x)=\left(\sin \left(x^{3}\right) / x+\sin \left(x^{3}\right) / x^{2}-3 x \cos \left(x^{3}\right)\right) \cdot\left(1+e^{-x}\right)
$$

The second factor tends to 1 , and in the first factor the first two summands tend to 0 . But the last summand oscillates with increasing amplitude, and so $f^{\prime}(x) / g^{\prime}(x)$ does not have a limit at all. (You might want to read carefully what the "L'Hôpital's Rule" theorem actually says!)
2. For what values of a does this (improper) integral converge?

$$
\int_{a}^{\infty} \frac{1}{\sqrt{\left|x^{3}(x-1)\right|}} d x
$$

(Possible Hint: One approch uses the substitution $u=\frac{1}{x}$.)
Answer: Except over the interval [0,1], we may ignore the absolute value signs. In particular we can evaluate the integral easily whenever $a \geq 1$. Using the hint provided, we see that for $a>1$,

$$
\int_{a}^{T} \frac{1}{\sqrt{x^{3}(x-1)}} d x=\int_{1 / T}^{1 / a} \frac{1}{\sqrt{1-u}} d u=-\left.2 \sqrt{1-u}\right|_{1 / T} ^{1 / a}
$$

and now taking the limit as $T \rightarrow \infty$ we see that for all $a>1$ the original integral converges (to $2(1-\sqrt{1-(1 / a)}))$.

The integral also converges when $a=1$: we need only consider the limit of the previous integrals as $a \rightarrow 1^{+}$, for which the value increases to 2 .

For $0<a<1$ we may then consider the integral over $[a, \infty)$ to be the sum of the integrals over $[a, 1]$ and $[1, \infty)$, the latter of which is now convergent. The former may be treated similarly: for $a>0$ we may write the integrand as

$$
\int_{a}^{T} \frac{1}{\sqrt{x^{3}(1-x)}} d x=\int_{1 / T}^{1 / a} \frac{1}{\sqrt{u-1}} d u=\left.2 \sqrt{u-1}\right|_{1 / T} ^{1 / a}
$$

and as we let T increase to 1 from the left, this expression converges (to $2 \sqrt{(1 / a)-1}-2$).
However, as we let a decrease to $0,1 / a \rightarrow \infty$ and then the value of this last integral diverges to $+\infty$. So the improper integral does NOT converge when $a=0$ (and then obviously not for any $a<0$ either). So the correct answer is that a should lie in the interval $(0, \infty)$.
3. Does the series

$$
\left(\frac{-1}{1}\right)+\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}-\frac{1}{9}\right)+\ldots
$$

converge? This series can also be written

$$
\sum \frac{\varepsilon(n)}{n}, \quad \text { where } \quad \varepsilon(n)= \begin{cases}-1, & \text { if } n \text { is a perfect square } \\ +1, & \text { otherwise }\end{cases}
$$

Answer: No, this series diverges. In the nth cluster there are $2 n-1$ terms

$$
\frac{1}{n^{2}-2 n+2}+\frac{1}{n^{2}-2 n+3}+\ldots+\frac{1}{n^{2}-1}-\frac{1}{n^{2}}
$$

The net sum of the last two is positive, and each of the others is larger than $1 / n^{2}$, so the total value of this set of terms is larger than $(2 n-3) / n^{2}$. For all $n>1$ this is in turn at least as big as $n / n^{2}=1 / n$, so the sum of all these groups of terms is then larger than $\sum_{n>1}(1 / n)$ which diverges. (It is the harmonic series.)
4. Compute the first six terms of the Taylor series for $\sec (x)$, that is, determine the coefficients $a_{0}, \ldots a_{5}$ in the expansion

$$
\sec (x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+\ldots
$$

Answer: Since $\sec (x)=1 / \cos (x)$ for all x, and the Taylor series for the cosine is

$$
1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+\frac{x^{6}}{6!}+\ldots
$$

it is sufficient to compute an expansion for

$$
\frac{1}{1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+\ldots}
$$

But (again an easy Taylor series computation)

$$
\frac{1}{1-u}=1+u+u^{2}+u^{3}+\ldots
$$

which we can use with $u=\frac{x^{2}}{2}-\frac{x^{4}}{24}$; only a few terms involve powers of x below the 6 th; we get

$$
\sec (x)=1+\left(\frac{x^{2}}{2}-\frac{x^{4}}{24}\right)+\left(\frac{x^{2}}{2}\right)^{2}
$$

This will give the required terms of the series. (The series can be continued in the same way; the first few terms are

$$
\left.\sec (x)=1+\frac{1}{2} x^{2}+\frac{5}{24} x^{4}+\frac{61}{720} x^{6}+\frac{277}{8064} x^{8}+\ldots\right)
$$

Note: it is very inefficient to use the all-purpose formula $\sum \frac{f^{(n)}(a)}{n!}(x-a)^{n}$ here; for example the fifth derivative of secant is

$$
\sec (x) \tan (x)^{5}+58 \sec (x)^{3} \tan (x)^{3}+61 \sec (x)^{5} \tan (x)
$$

5. Find the point on the paraboloid $z=2 x^{2}+y^{2}$ which is closest to the plane $6 x+4 y+$ $z+3=0$.

Answer: There was a typo in the statement of the problem: this particular plane intersects the paraboloid because there are pairs (x, y) where $2 x^{2}+y^{2}+6 x+4 y+3=0$ (namely any point on the ellipse $\left.2(x+3 / 2)^{2}+(y+2)^{2}=11 / 2\right)$. So any point ($x, y, 2 x^{2}+y^{2}$) is on the paraboloid and of distance zero from the plane.

What had been intended was for the coefficient " 3 " to have been a " 9 "; indeed the same answer is obtained for any coefficient "D" greater than $17 / 2$:

The distance from $\left(x_{0}, y_{0}, z_{0}\right)$ to the plane $A x+B y+C z+D=0$ is

$$
\frac{\left|A x_{0}+B y_{0}+C z_{0}+D\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}
$$

so for points on our paraboloid that distance is $\frac{\left|6 x+4 y+\left(2 x^{2}+y^{2}\right)+D\right|}{\sqrt{6^{2}+4^{2}+1^{2}}}$. In order to minimize this we need only find the positive maximum or negative minimum of $6 x+4 y+\left(2 x^{2}+y^{2}\right)+D$. This occurs where the gradient vanishes: $6+4 x=4+2 y=0$, i.e. at the point $(x, y)=$ $(-3 / 2,-2)$ (where $z=17 / 2$).

