Name: \qquad
Present Calculus Course: \qquad

UT EID:

Instructor:
\qquad
Permanent Mailing Address: \qquad

E-mail address:

\qquad
School (Natural Sciences, Engineering, etc.)
Show all work in your solutions; turn in your solutions on the sheets provided. (Suggestion: Do preliminary work on scratch paper that you don't turn in; write up final solutions neatly and in order; write your name on all pages turned in.)

1. Let $f(x)=e^{-x} \sin \left(x^{3}\right) / x$ and $g(x)=\ln \left(1+e^{-x}\right)$. Compute

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}
$$

2. For what values of a does this (improper) integral converge?

$$
\int_{a}^{\infty} \frac{1}{\sqrt{\left|x^{3}(x-1)\right|}} d x
$$

(Possible Hint: One approch uses the substitution $u=\frac{1}{x}$.)
3. Does the series

$$
\left(\frac{-1}{1}\right)+\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}-\frac{1}{9}\right)+\ldots
$$

converge? This series can also be written

$$
\sum \frac{\varepsilon(n)}{n}, \quad \text { where } \quad \varepsilon(n)= \begin{cases}-1, & \text { if } n \text { is a perfect square } \\ +1, & \text { otherwise }\end{cases}
$$

4. Compute the first six terms of the Taylor series for $\sec (x)$, that is, determine the coefficients $a_{0}, \ldots a_{5}$ in the expansion

$$
\sec (x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+\ldots
$$

5. Find the point on the paraboloid $z=2 x^{2}+y^{2}$ which is closest to the plane $6 x+4 y+$ $z+3=0$.
