Name:
Present Calculus Course: $\qquad$

## UT EID:

Instructor: $\qquad$

## Permanent Mailing Address:

$\qquad$

## E-mail address:

School (Natural Sciences, Engineering, etc.)
Show all work in your solutions; turn in your solutions on the sheets provided. (Suggestion: Do preliminary work on scratch paper that you don't turn in; write up final solutions neatly and in order; write your name on all pages turned in.)

1. Evaluate the following limit (or explain why the limit does not exist):

$$
\lim _{x \rightarrow 0} \frac{1}{x^{4}} \int_{0}^{x^{2}} \sin \left(t^{2}\right) d t
$$

2. Determine whether this series converges or diverges. (Be sure to explain your reasoning.)

$$
\sum_{n=2}^{\infty} \ln \left(n \sin \left(\frac{1}{n}\right)\right)
$$

3. Evaluate the following limit (or explain why the limit does not exist):

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{\cos (x)+\frac{1}{2} x^{2}-1}{x^{4}+y^{4}}
$$

4. Find all functions $f(x, y)$ for which $\nabla f(x, y)=\langle y,-x\rangle$.
5. Consider the surface

$$
S=\{(x, y, z) \mid x y z=27, x>0, y>0, z>0\}
$$

Show that all pyramids formed by the three coordinate planes and a plane tangent to the surface $S$ have the same volume.

