ALBERT A. BENNETT CALCULUS PRIZE EXAM - Dec 82013
Here are some possible responses to this semester's Bennett exam.

1. Evaluate the following limit (or explain why the limit does not exist):

$$
\lim _{x \rightarrow 0^{+}} \frac{x \sin \left(\frac{1}{x}\right)}{\ln (1+\sqrt{x})}
$$

Answer: As $x \rightarrow 0^{+}, \sqrt{x} \rightarrow 0^{+}$too, and thus $\ln (1+\sqrt{x})$ is approximately as big as \sqrt{x}; more precisely

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln (1+\sqrt{x})}{\sqrt{x}}=1
$$

so we may compute our limit as

$$
\lim _{x \rightarrow 0^{+}} \sqrt{x} \sin \left(\frac{1}{x}\right) \cdot \frac{\sqrt{x}}{\ln (1+\sqrt{x})}=\lim _{x \rightarrow 0^{+}} \sqrt{x} \sin \left(\frac{1}{x}\right)=0
$$

by the Squeeze Theorem, since $|\sin (u)| \leq 1$ for all u.
A small variant: write the function as $\frac{x}{\ln (1+\sqrt{x})} \cdot \sin \left(\frac{1}{x}\right)$, showing the first part tends to zero and then as above using the Squeeze Theorem.

Note: If you try to use L'Hopital's Rule, you find you must compute the limit of

$$
2(1+\sqrt{x}) \cdot\left(\sqrt{x} \sin (1 / x)-\frac{\cos (1 / x)}{\sqrt{x}}\right)
$$

which does not exist (the last term oscillates ever faster and ever larger as $x \rightarrow 0$!). But when $f^{\prime}(x) / g^{\prime}(x)$ does not have a limit, L'Hopital's Rule is silent - that theorem does not guarantee that $f(x) / g(x)$ has no limit, and indeed this example shows that f / g may still have a limit when f^{\prime} / g^{\prime} does not.
2. Which is larger - $\ln (2)$ or $\arctan (1)$? You must answer without a calculator of course, and memorized digits are also useless unless you can explain how those digits are computed. Use some calculus to describe these numbers.
Answer:

$$
\ln (2)=\int_{0}^{1} \frac{d x}{1+x}<\int_{0}^{1} \frac{d x}{1+x^{2}}=\arctan (1)
$$

since $x>x^{2}$ on $[0,1]$. (Actually $\ln (2) \approx 0.693$ and $\arctan (1)=\pi / 4 \approx 0.785$.)
Equivalently: $f(x)=\ln (1+x)-\arctan (x)$ is 0 when $x=0$ and easily checked to be decreasing for $0<x<1$, so it's negative at $x=1$. (As it turns out, it's negative iff $x<2.0633197$....)

You can instead use the power series for $\ln (1+x)$ and $\arctan (x)$, each evaluated at $x=1$; taking terms in pairs we have

$$
\ln (2)=1-1 / 2+1 / 3-1 / 4+1 / 5-\ldots=1-1 / 6-1 / 20-\ldots-2 /\left(8 n^{2}+4 n\right)-\ldots
$$

while
$\arctan (1)=1-1 / 3+1 / 5-1 / 7+1 / 9-\ldots=1-2 / 15-2 / 63-\ldots-2 /\left(16 n^{2}-1\right)-\ldots$
But for all $n \geq 1,16 n^{2}-1>8 n^{2}+4 n$. So each negative term in the series for $\ln (2)$ is larger than the corresponding one in $\arctan (1)$, making $\ln (2)$ the smaller of the two numbers.
(Many students knew that $\arctan (1)=\pi / 4$, which we can accept as known for this purpose; memorizing the digits $\pi \approx 3.14$ is technically against the rules but even if we allow that, it's still necessary to estimate $\ln (2)$. The Taylor Series above converges slowly, but as one student noted, we can compute $\ln (2)=-\ln \left(1-\frac{1}{2}\right)=\frac{1}{2}+\frac{1}{8}+\frac{1}{24}+\ldots$ This converges much faster but it is a little harder to estimate the difference between a partial sum and the correct value. We can avoid computing the logarithm: since the exponential function is increasing we need only show that $e^{\arctan (1)}>2$, which we can do with a few terms of the Taylor series of e^{x} and $\arctan (x)$; for example, $\arctan (1)>1-1 / 3+1 / 5-1 / 7=76 / 105$, so $e^{\arctan (1)}>e^{76 / 105}>\sum_{i=0}^{3}\left(\frac{76}{105}\right)^{i} / i!=7115783 / 3472875=2.04896 \ldots$ You can use one fewer term of the series for e^{x} if you use one more pair of terms for $\arctan (x)$. Or if you assume it known that $\arctan (1)=\pi / 4$ and $\pi>3$ then compute $e>1+1+1 / 2+1 / 6=8 / 3$ and so $e^{\pi}>(8 / 3)^{3}=512 / 27>16=2^{4}$ whence $e^{\pi / 4}>2$.)
3. Evaluate the following series, or explain why the series does not converge:

$$
\frac{1}{1}+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+\ldots=\sum_{n=1}^{\infty} \frac{1}{\sum_{i=1}^{n} i}
$$

Answer: The denominator of the nth term is a finite sum typically treated in calculus books during the introduction to Integration; it is known to sum to $n(n+1) / 2$. So we are summing $\sum 2 /(n(n+1))$. But this particular series is a familiar example of a telescoping series: by Partial Fractions we may write the n term as $2(1 / n-1 /(n+1))$ so our series is

$$
2 \sum_{n \geq 1}\left(\frac{1}{n}-\frac{1}{n+1}\right)=2\left(\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots\right)=2
$$

4. Where does this function attain its maximum value?

$$
F(x, y)=\int_{x}^{x+4} \int_{y}^{y+6} e^{-\left(u^{2}+t^{2}\right)} d t d u
$$

Answer: $F(x, y)$ is the volume of the region under the graph of this exponential function (whose graph is the famous "bell curve" rotated around its central axis) and lying over $[x, x+4] \times[y, y+6]$, a rectangle in the plane having width 4 and height 6 . By symmetry we should position the center of the rectangle under the highest point of the surface (at $(0,0))$, so we should take $x=-2$ and $y=-3$.

Note: We could also maximize by finding the point where $\nabla F(x, y)=(0,0)$. We can compute the partial derivatives using the Fundamental Theorem of Calculus (and, for $\partial F / \partial y$, Fubini's Theorem):

$$
\partial F / \partial x=\int_{y}^{y+6} e^{-\left((x+4)^{2}+t^{2}\right)} d t-\int_{y}^{y+6} e^{-\left(x^{2}+t^{2}\right)} d t=\left(\int_{y}^{y+6} e^{-t^{2}} d t\right) \cdot\left(e^{-(x+4)^{2}}-e^{-x^{2}}\right)
$$

which can only be zero when $e^{-(x+4)^{2}}=e^{-x^{2}}$, i.e. when $(x+4)^{2}=x^{2}$, which requires $x=-2$. Likewise we must have $y=-3$. (Actually this isn't really a multivariable calculus problem because $F(x, y)=f(x) g(y)$ where each of f and g is a function defined by a single integral; we simply choose x to maximize f and y to maximize g.)
5. Find all vectors v in \mathbf{R}^{3} for which

$$
v \cdot u_{1}=10, \quad v \cdot u_{2}=11, \quad v \cdot u_{3}=12,
$$

where

$$
u_{1}=\langle 1,2,3\rangle \quad u_{2}=\langle 4,5,6\rangle \quad u_{3}=\langle 7,8,9\rangle
$$

Answer: These three equations are actually redundant, since $u_{2}=\left(u_{1}+u_{3}\right) / 2$. Now, the solution set to any one equation of the form $v \cdot u=c$ is a plane perpendicular to u. Thus the solution set to any two (and thus all three) of our equations is an intersection of two non-parallel planes, i.e. a line. Indeed, that line is perpendicular to both u_{i} and hence is parallel to $u_{1} \times u_{2}=\langle-3,6,-3\rangle$. Then all we need to describe the solution set completely is one point on the line, for example the point where this line pierces the x, y plane. Well, the vector $v=\langle x, y, 0\rangle$ is determined by the equations

$$
x+2 y=10 \quad 4 x+5 y=11
$$

from which we determine that $3 y=29$ and thus $y=29 / 3$ and $x=-28 / 3$. So the entire solution set is the collection of vectors

$$
\langle-28 / 3,29 / 3,0\rangle+t\langle 1,-2,1\rangle .
$$

