
ALBERT A. BENNETT CALCULUS PRIZE EXAM – Dec 8 2013
Here are some possible responses to this semester’s Bennett exam.

1. Evaluate the following limit (or explain why the limit does not exist):

lim
x→0+

x sin( 1
x )

ln(1 +
√
x)

Answer: As x → 0+,
√
x → 0+ too, and thus ln(1 +

√
x) is approximately as big as

√
x;

more precisely

lim
x→0+

ln(1 +
√
x)√

x
= 1

so we may compute our limit as

lim
x→0+

√
x sin(

1

x
) ·

√
x

ln(1 +
√
x)

= lim
x→0+

√
x sin(

1

x
) = 0

by the Squeeze Theorem, since | sin(u)| ≤ 1 for all u.
A small variant: write the function as x

ln(1+
√
x)
· sin( 1

x ), showing the first part tends

to zero and then as above using the Squeeze Theorem.

Note: If you try to use L’Hopital’s Rule, you find you must compute the limit of

2(1 +
√
x) ·

(√
x sin(1/x)− cos(1/x)√

x

)
which does not exist (the last term oscillates ever faster and ever larger as x → 0!). But
when f ′(x)/g′(x) does not have a limit, L’Hopital’s Rule is silent — that theorem does not
guarantee that f(x)/g(x) has no limit, and indeed this example shows that f/g may still
have a limit when f ′/g′ does not.

2. Which is larger — ln(2) or arctan(1)? You must answer without a calculator of course,
and memorized digits are also useless unless you can explain how those digits are computed.
Use some calculus to describe these numbers.

Answer:

ln(2) =

∫ 1

0

dx

1 + x
<

∫ 1

0

dx

1 + x2
= arctan(1)

since x > x2 on [0, 1]. (Actually ln(2) ≈ 0.693 and arctan(1) = π/4 ≈ 0.785.)
Equivalently: f(x) = ln(1 + x) − arctan(x) is 0 when x = 0 and easily checked to

be decreasing for 0 < x < 1, so it’s negative at x = 1. (As it turns out, it’s negative iff
x < 2.0633197 . . ..)

You can instead use the power series for ln(1 + x) and arctan(x), each evaluated at
x = 1; taking terms in pairs we have

ln(2) = 1− 1/2 + 1/3− 1/4 + 1/5− . . . = 1− 1/6− 1/20− . . .− 2/(8n2 + 4n)− . . .



while

arctan(1) = 1− 1/3 + 1/5− 1/7 + 1/9− . . . = 1− 2/15− 2/63− . . .− 2/(16n2 − 1)− . . . .

But for all n ≥ 1, 16n2−1 > 8n2+4n. So each negative term in the series for ln(2) is larger
than the corresponding one in arctan(1), making ln(2) the smaller of the two numbers.

(Many students knew that arctan(1) = π/4, which we can accept as known for this
purpose; memorizing the digits π ≈ 3.14 is technically against the rules but even if we allow
that, it’s still necessary to estimate ln(2). The Taylor Series above converges slowly, but as
one student noted, we can compute ln(2) = − ln(1− 1

2 ) = 1
2 + 1

8 + 1
24 + . . . This converges

much faster but it is a little harder to estimate the difference between a partial sum and
the correct value. We can avoid computing the logarithm: since the exponential function
is increasing we need only show that earctan(1) > 2, which we can do with a few terms of the
Taylor series of ex and arctan(x); for example, arctan(1) > 1− 1/3 + 1/5− 1/7 = 76/105,

so earctan(1) > e76/105 >
∑3
i=0( 76

105 )i/i! = 7115783/3472875 = 2.04896 . . . You can use one
fewer term of the series for ex if you use one more pair of terms for arctan(x). Or if you
assume it known that arctan(1) = π/4 and π > 3 then compute e > 1+1+1/2+1/6 = 8/3
and so eπ > (8/3)3 = 512/27 > 16 = 24 whence eπ/4 > 2. )

3. Evaluate the following series, or explain why the series does not converge:

1

1
+

1

(1 + 2)
+

1

(1 + 2 + 3)
+ . . . =

∞∑
n=1

1∑n
i=1 i

Answer: The denominator of the nth term is a finite sum typically treated in calculus
books during the introduction to Integration; it is known to sum to n(n+ 1)/2. So we are
summing

∑
2/(n(n+ 1)). But this particular series is a familiar example of a telescoping

series: by Partial Fractions we may write the n term as 2(1/n− 1/(n+ 1)) so our series is

2
∑
n≥1

(
1

n
− 1

n+ 1

)
= 2

(
(1− 1

2
) + (

1

2
− 1

3
) + · · ·

)
= 2

4. Where does this function attain its maximum value?

F (x, y) =

∫ x+4

x

∫ y+6

y

e−(u
2+t2) dtdu

Answer: F (x, y) is the volume of the region under the graph of this exponential function
(whose graph is the famous “bell curve” rotated around its central axis) and lying over
[x, x+ 4]× [y, y + 6], a rectangle in the plane having width 4 and height 6. By symmetry
we should position the center of the rectangle under the highest point of the surface (at
(0,0)), so we should take x = −2 and y = −3.



Note: We could also maximize by finding the point where ∇F (x, y) = (0, 0). We
can compute the partial derivatives using the Fundamental Theorem of Calculus (and, for
∂F/∂y, Fubini’s Theorem):

∂F/∂x =

∫ y+6

y

e−((x+4)2+t2) dt−
∫ y+6

y

e−(x
2+t2) dt = (

∫ y+6

y

e−t
2

dt) ·
(
e−(x+4)2 − e−x

2
)

which can only be zero when e−(x+4)2 = e−x
2

, i.e. when (x + 4)2 = x2, which requires
x = −2. Likewise we must have y = −3. (Actually this isn’t really a multivariable calculus
problem because F (x, y) = f(x)g(y) where each of f and g is a function defined by a single
integral; we simply choose x to maximize f and y to maximize g.)

5. Find all vectors v in R3 for which

v · u1 = 10, v · u2 = 11, v · u3 = 12,

where
u1 = 〈1, 2, 3〉 u2 = 〈4, 5, 6〉 u3 = 〈7, 8, 9〉

Answer: These three equations are actually redundant, since u2 = (u1 + u3)/2. Now, the
solution set to any one equation of the form v · u = c is a plane perpendicular to u. Thus
the solution set to any two (and thus all three) of our equations is an intersection of two
non-parallel planes, i.e. a line. Indeed, that line is perpendicular to both ui and hence is
parallel to u1 × u2 = 〈−3, 6,−3〉. Then all we need to describe the solution set completely
is one point on the line, for example the point where this line pierces the x, y plane. Well,
the vector v = 〈x, y, 0〉 is determined by the equations

x+ 2y = 10 4x+ 5y = 11

from which we determine that 3y = 29 and thus y = 29/3 and x = −28/3. So the entire
solution set is the collection of vectors

〈−28/3, 29/3, 0〉+ t〈1,−2, 1〉.


