Name: \qquad
Present Calculus Course: \qquad
UT EID: \qquad
Instructor: \qquad
Permanent Mailing Address: \qquad

E-mail address:

School (Natural Sciences, Engineering, etc.)
Show all work in your solutions; turn in your solutions on the sheets provided. (Suggestion: Do preliminary work on scratch paper that you don't turn in; write up final solutions neatly and in order; write your name on all pages turned in.)

1. Evaluate the following limit (or explain why the limit does not exist):

$$
\lim _{x \rightarrow 0} \frac{x \sin \left(\frac{1}{x}\right)}{\ln (1+\sqrt{x})}
$$

2. Which is larger - $\ln (2)$ or $\arctan (1)$? You must answer without a calculator of course, and memorized digits are also useless unless you can explain how those digits are computed. Use some calculus to describe these numbers.
3. Evaluate the following series, or explain why the series does not converge:

$$
\frac{1}{1}+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+\ldots=\sum_{n=1}^{\infty} \frac{1}{\sum_{i=1}^{n} i}
$$

4. Where does this function attain its maximum value?

$$
F(x, y)=\int_{x}^{x+4} \int_{y}^{y+6} e^{-\left(u^{2}+t^{2}\right)} d t d u
$$

5. Find all vectors v in \mathbf{R}^{3} for which

$$
v \cdot u_{1}=10, \quad v \cdot u_{2}=11, \quad v \cdot u_{2}=12
$$

where

$$
u_{1}=\langle 1,2,3\rangle \quad u_{2}=\langle 4,5,6\rangle \quad u_{3}=\langle 7,8,9\rangle
$$

