Name:
Present Calculus Course: \qquad
UT EID:
Instructor: \qquad
Permanent Mailing Address: \qquad

E-mail address:

College (Natural Sciences, Engineering, etc.)
Show all work in your solutions; turn in your solutions on the sheets provided.
No calculators allowed. (Suggestion: Do preliminary work on scratch paper that you don't turn in; write up final solutions neatly and in order; write your name on all pages turned in.)

1. Evaluate the integrals:
(a) $\int_{0}^{1} \frac{x^{3}-x^{2}}{x^{2}-3 x+2} d x$
(b) $\int_{0}^{\pi / 6} \sin (3 x) \sin (5 x) d x$
2. Find the integer part of $\sum_{n=1}^{40000} \frac{1}{\sqrt{n}}$. (That is, if the sum is evaluated numerically, what are the digits to the left of the decimal point?)
3. For $t>0$ let $F(t)=\frac{1}{t} \int_{0}^{\frac{\pi}{2} t}|\cos (2 x)| d x$. Compute $\lim _{t \rightarrow 0} F(t)$.
4. Find all the critical points of the function $f(x, y)=x^{2}+y^{2}(1-x)^{3}$, and classify them as local minima, absolute (global) maxima, saddle points, etc.
5. Points P and Q move together around the parabola $y=x^{2}$ in such a way that the area cut off from the parabola by the line segment $P Q$ always has area $\frac{4}{3}$. Let M be the midpoint of $P Q$. What curve does M trace out as P and Q vary around the parabola?

Answers will soon be posted to http://www.math.utexas.edu/users/rusin/Bennett/ .

