1. Find the $10^{\text {th }}$ derivative of $\frac{6}{x^{3}+x^{2}-2 x}$

ANSWER Try using the technique of Partial Fractions to write this function as a sum of simple parts. The function turns out to equal

$$
\frac{2}{x-1}+\frac{1}{x+2}-\frac{3}{x}
$$

from which we see that the nth derivative is

$$
(-1)^{n} \cdot n!\cdot\left(2 \cdot(x-1)^{-(n-1)}+(x+2)^{-(n-1)}-3 \cdot(x+2)^{-(n-1)}\right)
$$

2. Sasha Student has prepared poorly for the Calculus test and thinks that for all differentiable functions f and g it is true that

$$
\frac{d}{d x}(f(x) g(x))=f^{\prime}(x) g^{\prime}(x)
$$

Amazingly, Sasha used this false result on a particular such product and nonetheless obtained the correct derivative of $f(x) g(x)$! Find a pair $\{f(x), g(x)\}$ of non-constant functions for which this is possible. (A few extra points will be awarded for finding additional, substantially different, such pairs.)

ANSWER We are looking for two functions $f(x)$ and $g(x)$ for which

$$
f(x) g^{\prime}(x)+f^{\prime}(x) g(x)=f^{\prime}(x) g^{\prime}(x)
$$

Divide both sides by $f^{\prime}(x) g^{\prime}(x)$ to see that we require

$$
\frac{f(x)}{f^{\prime}(x)}+\frac{g(x)}{g^{\prime}(x)}=1
$$

The easiest way to accomplish this is to have each of the summands equal $1 / 2$, which requires $f^{\prime}(x)=2 f(x)$ and $g^{\prime}(x)=2 g(x)$. This occurs if (and only if) each of the two functions is a multiple of $e^{2 x}$.

Many other solutions are possible: we can have

$$
\frac{f(x)}{f^{\prime}(x)}=\left(\frac{1}{2}\right)(1+h(x)), \quad \frac{g(x)}{g^{\prime}(x)}=\left(\frac{1}{2}\right)(1-h(x))
$$

for any function h. You may recognize the expression $f^{\prime}(x) / f(x)$ from "logarithmic differentiation": it's the derivative of $F(x)=\ln (|f(x)|)$. So we need to compute functions F and G which satisfy $F^{\prime}(x)=2 /(1+h(x))$ and $G^{\prime}(x)=2 /(1-h(x))$, from which we will obtain our answers:

$$
f(x)=e^{2 \int d x /(1+h(x))}, \quad g(x)=e^{2 \int d x /(1-h(x))}
$$

There are many kinds of solutions you could try. For example, if $h(x)=k x$ for some constant k then the solutions are

$$
f(x)=(1+k x)^{2 / k}, \quad g(x)=(1-k x)^{-2 / k}
$$

e.g. $\{(1+2 x), 1 /(1-2 x)\}$. Using Partial Fractions you can compute solutions whenever $h(x)$ is any rational function, e.g. for $h(x)=x^{2}$ we obtain $\left\{(1+x) /(1-x), e^{2 \arctan (x)}\right\}$. And you have the skills to handle certain transcendental functions as well, e.g. when $h(x)=\tan (x)$ we obtain the solution $\left\{e^{x}(\cos (x)+\sin (x)), e^{x} /(\cos (x)-\sin (x))\right\}$. Other solutions noted by students include $\{x, 1 /(1-x)\}$ and $\left\{e^{x}(x-1), e^{x^{2} / 2}\right\}$.
3. The equation $x=2 y+3 y^{2}+4 y^{3}$ defines y implicitly as a function of x. (That is, the graph of this equation is the graph of some function $y=f(x)$.) Compute the 0th through 3rd terms of the Taylor series of this function at the origin.
ANSWER We can compute the derivatives of y by implicit differentiation: since $\frac{d x}{d y}=$ $2+6 y+12 y^{2}$, we conclude $d y / d x=1 /\left(2+6 y+12 y^{2}\right)$. Then differentiate using the Chain Rule: $d^{2} y / d x^{2}=-(6+24 y) /\left(2+6 y+12 y^{2}\right)^{2} \cdot(d y / d x)=-(6+24 y) /\left(2+6 y+12 y^{2}\right)^{3}$ and similarly (albeit with more effort) we can compute

$$
\frac{d^{3} y}{d x^{3}}=\frac{15\left(24 y^{2}+12 y+1\right)}{8\left(6 y^{2}+3 y+1\right)^{5}}
$$

Evaluating all these for $x=0$ (i.e. for $y=0$) we find

$$
f(0)=0, \quad f^{\prime}(0)=\frac{1}{2}, \quad f^{\prime \prime}(0)=\frac{-3}{4}, \quad f^{\prime \prime \prime}(0)=\frac{15}{8}
$$

so $y=\frac{1}{2} x-\frac{3}{8} x^{2}+\frac{5}{16} x^{3}+\ldots$.
It is probably easier to use the method of undetermined coefficients, though: write $y=a x+b x^{2}+c x^{3}+d x^{4}+\ldots$, substitute into the defining equation for y, expand, and collect powers of x. This leads to the equations
$2 a-1=0, \quad 3 a^{2}+2 b=0, \quad 4 a^{3}+6 a b+2 c=0, \quad 12 a^{2} b+6 a c+3 b^{2}+2 d=0, \quad \ldots$
which can be solved successively for the unknown coefficients to obtain

$$
a=1 / 2, \quad b=-3 / 8, \quad c=5 / 16, \quad d=-15 / 128, \quad \ldots
$$

4. For what values of x does this series converge?

$$
\sum_{n=1}^{\infty} \frac{n^{n} x^{\left(n^{2}\right)}}{n!}=x+2 x^{4}+\frac{9}{2} x^{9}+\frac{32}{3} x^{16}+\ldots
$$

ANSWER The Ratio Test as usually presented for power series does not apply because so many coefficients are zero (that is, $\lim \left|a_{n+1} / a_{n}\right|$ does not exist). But we may still use the Ratio Test for each x, just thinking of this as a series whose n term is as given. That is, the series converges if $L<1$ where L is

$$
\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{n+1} x^{(n+1)^{2}}}{(n+1)!} / \frac{n^{n} x^{\left(n^{2}\right)}}{n!}\right|=\lim _{n \rightarrow \infty}\left|\left(1+\frac{1}{n}\right)^{n} x^{2 n+1}\right|=e \lim _{n \rightarrow \infty}\left|x^{2 n+1}\right|
$$

If $|x|<1$, the last limit is zero, so $L=0$ and the series converges. If $|x|>1$, then $L=\infty$ so the series diverges. If $|x|=1$ then the limit is $L=e>1$ so the series diverges again. Thus the series converges for x in $(-1,1)$.
5. For what values of k does $f(x, y)=\frac{x^{k} y}{x^{6}+y^{2}}$ have a (finite) limit as $(x, y) \rightarrow(0,0)$?

ANSWER Since $a b /\left(a^{2}+b^{2}\right)<1 / 2$ for all real a, b, we see that for any $k>3$ we have $f(x, y)<|x|^{k-3} / 2 \rightarrow 0$. For $k \leq 3$ we consider the limit along the curves $y=r x^{3}$: $f(x, y)=r x^{k-3} /\left(1+r^{2}\right)$ there, which converges to ∞ if $k<3$, and which has different limits for different r if $k=3$. So the limit exists if and only if $k>3$.

Alternatively, replace x with a different coordinate $u=x^{3}$; in terms of u and y the question asks for the limit of $\left(u^{k / 3} y\right) /\left(u^{2}+y^{2}\right)$ as $(u, y) \rightarrow(0,0)$. This in turn can be addressed by using polar coordinates in the u, y plane: we need the limit of $r^{(k / 3)-1} \cos (\theta) \sin (\theta)$ as $r \rightarrow 0$. This limit is zero if $k>3$, and undefined for $k \leq 3$.

