Name: \qquad
Present Calculus Course: \qquad
UT EID: \qquad
Instructor: \qquad

Permanent Mailing Address:

\qquad

E-mail address:

College (Natural Sciences, Engineering, etc.)

Show all work in your solutions; turn in your solutions on the sheets provided. No calculators allowed. (Suggestion: Do preliminary work on scratch paper that you don't turn in; write up final solutions neatly and in order; write your name on all pages turned in.)

1. Find the $10^{\text {th }}$ derivative of $\frac{6}{x^{3}+x^{2}-2 x}$
2. Sasha Student has prepared poorly for the Calculus test and thinks that for all differentiable functions f and g it is true that

$$
\frac{d}{d x}(f(x) g(x))=f^{\prime}(x) g^{\prime}(x)
$$

Amazingly, Sasha used this false result on a particular such product and nonetheless obtained the correct derivative of $f(x) g(x)$! Find a pair $\{f(x), g(x)\}$ of non-constant functions for which this is possible. (A few extra points will be awarded for finding additional, substantially different, such pairs.)
3. The equation $x=2 y+3 y^{2}+4 y^{3}$ defines y implicitly as a function of x. (That is, the graph of this equation is the graph of some function $y=f(x)$.) Compute the 0th through 3rd terms of the Taylor series of this function at the origin.
4. For what values of x does this series converge?

$$
\sum_{n=1}^{\infty} \frac{n^{n} x^{\left(n^{2}\right)}}{n!}=x+2 x^{4}+\frac{9}{2} x^{9}+\frac{32}{3} x^{16}+\ldots
$$

5. For what values of k does $f(x, y)=\frac{x^{k} y}{x^{6}+y^{2}}$ have a (finite) limit as $(x, y) \rightarrow(0,0)$?

Answers will be posted to http://www.math.utexas.edu/users/rusin/Bennett/ shortly.

