Name:
Present Calculus Course: \qquad UT EID: \qquad
Instructor: \qquad
Permanent Mailing Address: \qquad

E-mail address:

College (Natural Sciences, Engineering, etc.)
Submit your solutions with all work shown on the sheets provided. No calculators allowed. (Suggestion: Do preliminary work on scratch paper that you don't submit; write up final solutions neatly and in order; write your name on all pages submitted.)

1. Find all lines tangent to the curve $y=x^{3}+14 x^{2}+30 x+72$ which pass through the origin.
2. Find, with proof, the absolute maximum of the function

$$
f(x)=\frac{1}{1+|x-2|}+\frac{4}{1+|x-5|}
$$

3. Does the improper integral $\int_{0}^{1} \frac{e^{-1 / x}}{x^{3}} d x$ converge?
4. What is the sum of this series?

$$
\sum_{n=1}^{\infty}\left(\frac{(-3)^{n}-n}{4^{n}}\right)
$$

5. For this function of two variables

$$
f(x, y)= \begin{cases}x y\left(x^{2}-y^{2}\right) /\left(x^{2}+y^{2}\right) & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

compute $f_{y x}(0,0)-f_{x y}(0,0)$ (that is, the value of $\frac{\partial^{2} f}{\partial x \partial y}-\frac{\partial^{2} f}{\partial y \partial x}$ at the origin.)
Answers will soon appear at http://www.math.utexas.edu/users/rusin/Bennett/ .

