ALBERT A. BENNETT CALCULUS PRIZE EXAM Dec 6 2016

Name:	UT EID:
Present Calculus Course:	Instructor:
Permanent Mailing Address:	
E-mail address:	
College (Natural Sciences, Engineering	, etc.)

Submit your solutions with all work shown on the sheets provided. No calculators allowed. (Suggestion: Do preliminary work on scratch paper that you don't submit; write up final solutions neatly and in order; write your name on all pages submitted.)

- 1. Find all lines tangent to the curve $y = x^3 + 14x^2 + 30x + 72$ which pass through the origin.
- 2. Find, with proof, the absolute maximum of the function

$$f(x) = \frac{1}{1 + |x - 2|} + \frac{4}{1 + |x - 5|}$$

3. Does the improper integral $\int_0^1 \frac{e^{-1/x}}{x^3} dx$ converge?

4. What is the sum of this series?

$$\sum_{n=1}^{\infty} \left(\frac{(-3)^n - n}{4^n} \right)$$

5. For this function of two variables

$$f(x,y) = \begin{cases} xy(x^2 - y^2)/(x^2 + y^2) & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases},$$

compute $f_{yx}(0,0) - f_{xy}(0,0)$ (that is, the value of $\frac{\partial^2 f}{\partial x \partial y} - \frac{\partial^2 f}{\partial y \partial x}$ at the origin.)

Answers will soon appear at http://www.math.utexas.edu/users/rusin/Bennett/.