Name:
Present Calculus Course: \qquad
Permanent Mailing Address: \qquad

E-mail address:

UT EID:
Instructor: \qquad

College (Natural Sciences, Engineering, etc.)

Submit your solutions with all work shown on the sheets provided. No calculators allowed. (Suggestion: Do preliminary work on scratch paper that you don't submit; write up final solutions neatly and in order; write your name on all pages submitted.)

1. The equation $y^{3}+x^{2} y+2 x^{3}-3 x^{2}+1=0$ defines a curve in the plane. We view this curve as the graph of a function $y=f(x)$. Find all the critical points of this function and classify them as local maxima or local minima.
2. Show that $I=\int_{1}^{2} \frac{1}{4+x^{4}} d x$ lies between $\frac{1}{20}$ and $\frac{7}{24}$. Five points extra credit goes to the contestant who finds the smallest such interval containing the value of I.
3. Does the following series converge? (Why or why not?)

$$
\begin{aligned}
& \sum_{k=0}^{\infty}\left(3 \cdot \frac{\ln (4 k+2)}{4 k+2}-\frac{\ln (4 k+3)}{4 k+3}-\frac{\ln (4 k+4)}{4 k+4}-\frac{\ln (4 k+5)}{4 k+5}\right) \\
& \quad=3 \cdot \frac{\ln 2}{2}-\frac{\ln 3}{3}-\frac{\ln 4}{4}-\frac{\ln 5}{5}+3 \cdot \frac{\ln 6}{6}-\frac{\ln 7}{7}-\frac{\ln 8}{8}-\frac{\ln 9}{9}+3 \cdot \frac{\ln 10}{10}-\cdots
\end{aligned}
$$

4. Compute the limit or show that the limit does not exist:

$$
\lim _{(x, y) \rightarrow(0,0)}(\cos (x+y))^{\cot \left(x^{2}-x y+y^{2}\right)}
$$

5. Compute

$$
\int_{y=0}^{1}\left(\int_{x=0}^{1} \frac{x-y}{(x+y)^{3}} d x\right) d y \quad \text { and } \quad \int_{x=0}^{1}\left(\int_{y=0}^{1} \frac{x-y}{(x+y)^{3}} d y\right) d x
$$

Answers will soon appear at http://www.math.utexas.edu/users/rusin/Bennett/ .

