1. The equation $x^{y}=y^{x}$ describes a curve in the first quadrant of the plane containing the point $P=(4,2)$. Compute the slope of the line that is tangent to this curve at P.

ANSWER: Take logarithms to see that this equation is equivalent to $\ln (x) / x=\ln (y) / y$, that is, $f(x)=f(y)$ where $f(x)=\ln (x) / x$.

Now use Implicit Differentiation to get $f^{\prime}(x)=f^{\prime}(y) \frac{d y}{d x}$, i.e.

$$
\frac{d y}{d x}=\frac{f^{\prime}(x)}{f^{\prime}(y)}=\frac{(1-\ln (x)) / x^{2}}{(1-\ln (y)) / y^{2}}
$$

At the point P this gives a value of

$$
\frac{d y}{d x}=\frac{(1-2 \ln (2)) / 16}{(1-\ln (2)) / 4}
$$

about -0.31 .
If you know it, you may also use the Implicit Function Theorem, which tells us directly that on the curve $F(x, y)=0$ we have

$$
\frac{d y}{d x}=-\left(\frac{\partial F}{\partial y}\right)^{-1}\left(\frac{\partial F}{\partial x}\right)
$$

You could also use Implicit Differentiation directly on the equation $x^{y}=y^{x}$; it is helpful to recall that when a is independent of x, we have $(d / d x)\left(a^{x}\right)=a^{x} \cdot \log (a)$.

The graph of this function f is very revealing: $f(x)$ is positive iff $x>1$, increases to a maximum of $1 / e$ at $x=e$, and then decreases to zero as $x \rightarrow \infty$. Thus f achieves each value in $(0,1 / e)$ precisely twice. Hence $f(x)=f(y)$ iff $x=y$ or else x and y are such a pair of numbers where f attains a single value - one of them in $(1, e)$ and the other in (e, ∞). Note that as $x \rightarrow 1^{+}, y \rightarrow \infty$, and vice versa.

So the graph of $x^{y}=y^{x}$ consists of the line $y=x$ and this set of pairs (x, y) with $f(x)=f(y)$. It has asymptotes at $x=1$ and at $y=1$ and is contained in the region where $x>1$ and $y>1$. The formula above for $d y / d x$ then shows $d y / d x$ is everywhere negative, so the graph is everywhere decreasing.
2. Determine whether this series is convergent or divergent:

$$
\sum_{n=2}^{\infty} \frac{1}{(\ln (n))^{\ln (\ln (n))}}
$$

ANSWER: The series diverges.
Each term is positive, and may be written as $e^{-\left(\ln (\ln (n))^{2}\right.}$. Now, for all $x>0$ we have $\ln (x)<\sqrt{x}$. (This is easily proved by noting that $f(x)=\sqrt{x}-\ln (x)$ has a minimum value at $x=4$, where $f(4)=2 \ln (e / 2)>0$.) So $(\ln (x))^{2}<x$ for all $x>0$, including when $x=\ln (n)$, i.e. $e^{(\ln (\ln (n)))^{2}}<e^{\ln (n)}=n$. (Equivalently, let $y=\ln (\ln (n))$ and then note $(\ln (n))^{\ln (\ln (n))}=\left(e^{y}\right)^{y}=e^{\left(y^{2}\right)}<e^{\left(e^{y}\right)}=n$.) Thus the nth term of our series is greater than $1 / n$, and hence this series diverges by comparison to the Harmonic Series.
(For comparison, $\sum_{n=2}^{\infty} \frac{1}{(\ln (n))^{\ln (n)}}$ converges, this one being the sum of $1 / n^{\ln (\ln (n))}$, and that exponent is more than $1.019>1$ for all $n>15$.)
3. Compute $\int_{0}^{\pi / 4} \frac{1}{\cos (x)+\sin (x)} d x$.

ANSWER: The integral will be computed to be $\ln (\sqrt{2}+1) / \sqrt{2}$ by the Fundamental Theorem of Calculus. We may use any of several substitutions to help us find the antiderivative.

Simplest, perhaps, is to note that

$$
\cos (x)+\sin (x)=\sqrt{2}\left(\cos \left(\frac{\pi}{4}\right) \cos (x)+\sin \left(\frac{\pi}{4}\right) \sin (x)\right)=\sqrt{2} \cos \left(x-\frac{\pi}{4}\right)
$$

so if we use the substitution $u=x-(\pi / 4)$ our integral becomes

$$
\begin{aligned}
\int_{u=-\frac{\pi}{4}}^{u=0} \frac{d u}{\sqrt{2} \cos (u)} & =\frac{1}{\sqrt{2}} \int_{u=-\frac{\pi}{4}}^{u=0} \sec (u) d u=\left.\frac{1}{\sqrt{2}} \ln (|\sec (u)+\tan (u)|)\right|_{-\pi / 4} ^{0} \\
& =-\frac{1}{\sqrt{2}} \ln (\sqrt{2}-1)=\frac{1}{\sqrt{2}} \ln (\sqrt{2}+1)
\end{aligned}
$$

(More generally any linear combination of $\sin (x)$ and $\cos (x)$ may be combined into a single term $A \cos (x+B)$ in a similar way.)

A closely-related suggestion would be $u=\sin (x)-\cos (x)$; then $u^{2}=1-2 \sin (x) \cos (x)$ and $d x /(\cos (x)+\sin (x))=d u /\left(2-u^{2}\right)$, which we must integrate from $u=-1$ to $u=0$, to get the same conclusion.

Or we may use the half-angle substitution $u=\tan (x / 2)$. I will let you check the trigonometry that proves

$$
\cos (x)=\frac{1-u^{2}}{1+u^{2}}, \quad \sin (x)=\frac{2 u}{1+u^{2}}, \quad d x=\frac{2 d u}{1+u^{2}}
$$

This transforms our integral into

$$
\int_{u=0}^{u=\sqrt{2}-1} \frac{1+u^{2}}{\left(1-u^{2}\right)+(2 u)} \frac{2 d u}{1+u^{2}}=-2 \int_{u=0}^{u=\sqrt{2}-1} \frac{d u}{(u-1)^{2}-2}
$$

which may be computed using Partial Fractions. (This half-angle substitution converts any rational function of the six trig functions into a rational function of u, which may then be computed using Partial Fractions.)

Or we may use deMoivre's formulas: $\cos (x)=\left(e^{i x}+e^{-i x}\right) / 2$ and $\sin (x)=\left(e^{i x}-\right.$ $\left.e^{-i x}\right) /(2 i)$. In this case we may let $u=e^{i x}$ (so $d u=i u d x$) and the substitution results in a rational function of u, again amenable to Partial Fractions.

Or, multiply numerator and denominator by $\cos (x)-\sin (x)$ to write the integrand as

$$
\frac{\cos (x)}{1-2 \sin ^{2}(x)}+\frac{-\sin (x)}{2 \cos ^{2}(x)-1}
$$

(Each denominator equals $\cos ^{2}(x)-\sin ^{2}(x)$.) Substitute $u=\sin (x)$ resp. $u=\cos (x)$, to transform each of the two indefinite integrals to $\pm \int \frac{d u}{1-2 u^{2}}$, which can be evaluated using Partial Fractions and then rewritten again in terms of sines and cosines. (Some care must be taken when evaluating this antiderivative at $x=\pi / 4$ precisely because the extra factor $\cos (x)-\sin (x)$ which we introduced vanishes at this value of x, that is, we have created an improper integral. In that case we take a limit as the upper limit of integration approaches $\pi / 4$ from the left, using L'Hôpital's Rule in the antiderivative.)

This last approach illustrates another general technique useful for trig integrals. What we did here was to write the integrand $f(x)$ as the sum of its even part $(f(x)+f(-x)) / 2$ and its odd part $(f(x)-f(-x)) / 2$; the first is a function $f_{1}(\cos (x))$ of $\cos (x)$ alone and the second may similarly be written as $\sin (x) f_{2}(\cos (x))$. For the second integral we use the substitution $u=\cos (x)$ to get $\int f_{2}(u) d u$, that is we have removed the trigonometry. For the first integral, we first write f_{1} in terms of its even and odd parts, one being a function $f_{3}\left(\cos ^{2}(x)\right)$ of $\cos ^{2}(x)$ alone and the other being of the form $\cos (x) f_{4}\left(\cos ^{2}(x)\right)=$ $\cos (x) f_{4}\left(1-\sin ^{2}(x)\right)$; of these two parts the first is improved with the double-angle formula for cosine, and the second is amenable to the substitution $u=\sin (x)$.
4. A wedding ring is the three-dimensional solid that remains after drilling a cylindrical hole through the center of a sphere. Compute, with proof, the volume of metal in a metallic wedding ring that is 6 mm tall when it rests on a table, as a function of the radius r of the hole that has been drilled.

ANSWER: When $r=0$, we have drilled out none of the sphere, so the height is the diameter of the sphere, and the volume is the volume of a sphere of radius 3 mm , namely $V=\frac{4}{3} \pi r^{3}=36 \pi \mathrm{~mm}^{3}$. Amazingly, the volume of metal is $36 \pi \mathrm{~mm}^{3}$ irrespective of the value of r !

Let s be the radius of the sphere, i.e. the distance from a point on the outside of the wedding ring to the center of the sphere. If that point is at a distance d from the central axis of the wedding ring, and at a height h above the center of the sphere, then a small right triangle will show that $s^{2}=h^{2}+d^{2}$. In the special case that the point is along the top edge of the wedding ring, this shows $s^{2}=3^{2}+r^{2}$.

Now, this "wedding ring" can be viewed as a solid of revolution; we are spinning a region shaped like a thin letter D around the central axis. Thus the cross-section perpendicular to the central axis at a height of h is an annulus ("washer") with an inner radius of r and an outer radius of d, and hence of area $\pi d^{2}-\pi r^{2}=\pi\left(s^{2}-h^{2}\right)-\pi\left(s^{2}-3^{2}\right)=\pi\left(9-h^{2}\right)$.

Thus the volume of the ring is, as advertised,

$$
\int_{h=-3}^{h=+3} \pi\left(9-h^{2}\right) d h=\left.\pi\left(9 h-\frac{h^{3}}{3}\right)\right|_{-3} ^{3}=36 \pi
$$

One may also use the method of shells: at a distance t from the central axis $(0<$ $t<s)$ the half of the figure lying above the central plane is a cylinder of height $\sqrt{s^{2}-t^{2}}$ (and radius t), hence the total volume of the top half of the ring is $\int_{r}^{s} 2 \pi t \sqrt{s^{2}-t^{2}} d t=$ $(2 \pi / 3)\left(s^{2}-r^{2}\right)^{3 / 2}$, and yet as noted above $s^{2}-r^{2}=9 \mathrm{~mm}^{2}$, giving the same conclusion as above. One obtains precisely the same integral by computing the volume as an integral $2 \int_{A} \sqrt{s^{2}-\left(x^{2}+y^{2}\right)} d x d y$ over the annulus A having radii r and s, when using polar coordinates.

This is a well-known question.
5. The curve parameterized by $x(t)=\cos ^{3}(t), y(t)=\sin ^{3}(t), z(t)=\cos (2 t)$ passes through the point $(1,0,1)$ when $t=0$ and passes through the point $(0,1,-1)$ when $t=\pi / 2$, having traversed a path of length $5 / 2$. (You don't have to prove this.) What point will it pass through after having traversed a length of exactly 1 ?

ANSWER: The length of a segment of a parameterized curve can be viewed as the distance traveled, and distance is the integral of speed (over time); speed is the magnitude of the velocity vector, and velocity is the rate of change of position. That is, the length of the curve between $t=a$ and $t=b$ is

$$
L=\int_{t=a}^{t=b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t
$$

In our case $x^{\prime}(t)=-3 \cos ^{2}(t) \sin (t)$ and $y^{\prime}(t)=3 \sin ^{2}(t) \cos (t)$, so already we have $\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}=(3 \sin (t) \cos (t))^{2}\left(\cos ^{2} t+\sin ^{2} t\right)=9 \sin ^{2}(t) \cos ^{2}(t)$. Next, since $z^{\prime}(t)=$ $-2 \sin (2 t)=-4 \sin (t) \cos (t)$, we then have $\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}+\left(z^{\prime}\right)^{2}=(\sin (t) \cos (t))^{2}\left(3^{2}+4^{2}\right)$, so the integrand is the square root of this: $5|\sin (t) \cos (t)|$. In our case we will have $t \in(0, \pi / 2)$, so both the sine and the cosine are positive and the absolute value bars unnecessary. Thus

$$
L=\int_{t=0}^{t=b} 5 \sin (t) \cos (t) d t=\left.\frac{5}{2} \sin ^{2}(t)\right|_{0} ^{b}=\frac{5}{2} \sin ^{2}(b)
$$

This is equal to 1 when $\sin (b)=\sqrt{2 / 5}$. Then $\cos (b)=\sqrt{3 / 5}$ and $\cos (2 b)=\cos ^{2}(b)-$ $\sin ^{2}(b)=1 / 5$, so the point we will have reached is

$$
(x, y, z)=\left((3 / 5)^{3 / 2},(2 / 5)^{3 / 2}, 1 / 5\right)
$$

Of course there is nothing special about making the length equal to 1 ; we will have traversed any distance $\ell<5 / 2$ when $\sin ^{2}(b)=2 \ell / 5$ so that we will be at position

$$
p(\ell)=\left(\left(1-\frac{2 \ell}{5}\right)^{3 / 2},\left(\frac{2 \ell}{5}\right)^{3 / 2}, 1-\frac{4 \ell}{5}\right)
$$

This function p provides a new parameterization of the same curve, with now the additional feature that for all t, the curve from $p(0)$ to $p(t)$ has arclength t, that is, we are traversing the curve at a constant speed of 1 . This kind of re-parameterization is always possible (at least in principle, if not with formulas) for any smooth curve; it is called parameterization with respect to arclength.

