ALBERT A. BENNETT CALCULUS PRIZE EXAM Dec 11 2018

Name:	UT EID:
Present Calculus Course:	Instructor:
Permanent Mailing Address:	
E-mail address:	
College (Natural Sciences, Engineering, etc.)	
Submit your solutions with all work shown on the sheets provided. No calculators	

allowed. (Suggestion: Work first on scrap paper that you don't submit; write up final solutions neatly and in order, with your name on all pages submitted.)

- 1. The equation $x^y = y^x$ describes a curve in the first quadrant of the plane containing the point P = (4, 2). Compute the slope of the line that is tangent to this curve at P. Some extra credit will be given for a good sketch of the graph of this curve.
- 2. Determine whether this series is convergent or divergent:

$$\sum_{n=2}^{\infty} \frac{1}{(\ln(n))^{\ln(\ln(n))}}$$

3. Compute
$$\int_0^{\pi/4} \frac{1}{\cos(x) + \sin(x)} \, dx.$$

- 4. A wedding ring is the three-dimensional solid that remains after drilling a cylindrical hole through the center of a sphere. Compute, with proof, the volume of metal in a metallic wedding ring that is 6mm tall when it rests on a table, as a function of the radius r of the hole that has been drilled.
- 5. The curve parameterized by $x(t) = \cos^3(t)$, $y(t) = \sin^3(t)$, $z(t) = \cos(2t)$ passes through the point (1, 0, 1) when t = 0 and passes through the point (0, 1, -1) when $t = \pi/2$, having traversed a path of length 5/2. (You don't have to prove this.) What point will it pass through after having traversed a length of exactly 1 ?

Answers will soon appear at http://www.math.utexas.edu/users/rusin/Bennett/.