Name:
Present Calculus Course: \qquad

UT EID:
Instructor: \qquad

Permanent Mailing Address: \qquad

E-mail address:

College (Natural Sciences, Engineering, etc.)
Submit your solutions with all work shown on the sheets provided. No calculators allowed. (Suggestion: Work first on scrap paper that you don't submit; write up final solutions neatly and in order, with your name on all pages submitted.)

1. The equation $x^{y}=y^{x}$ describes a curve in the first quadrant of the plane containing the point $P=(4,2)$. Compute the slope of the line that is tangent to this curve at P. Some extra credit will be given for a good sketch of the graph of this curve.
2. Determine whether this series is convergent or divergent:

$$
\sum_{n=2}^{\infty} \frac{1}{(\ln (n))^{\ln (\ln (n))}}
$$

3. Compute $\int_{0}^{\pi / 4} \frac{1}{\cos (x)+\sin (x)} d x$.
4. A wedding ring is the three-dimensional solid that remains after drilling a cylindrical hole through the center of a sphere. Compute, with proof, the volume of metal in a metallic wedding ring that is 6 mm tall when it rests on a table, as a function of the radius r of the hole that has been drilled.
5. The curve parameterized by $x(t)=\cos ^{3}(t), y(t)=\sin ^{3}(t), z(t)=\cos (2 t)$ passes through the point $(1,0,1)$ when $t=0$ and passes through the point $(0,1,-1)$ when $t=\pi / 2$, having traversed a path of length $5 / 2$. (You don't have to prove this.) What point will it pass through after having traversed a length of exactly 1 ?

Answers will soon appear at http://www.math.utexas.edu/users/rusin/Bennett/ .

