Name: \qquad
Present Calculus Course: \qquad
UT EID: \qquad

Instructor:

\qquad
Permanent Mailing Address: \qquad

E-mail address:

College (Natural Sciences, Engineering, etc.)
Submit your solutions with all work shown on the sheets provided. No calculators allowed. (Suggestion: Work first on scrap paper that you don't submit; write up final solutions neatly and in order, with your name on all pages submitted.)

1. Find the positive number k for which the curves $y=\ln (x)$ and $y=x^{k}$ have exactly one point of intersection.
2. What is the minimum value of the sum of a convergent geometric series whose third term is 1 and whose other terms are all positive?
3. Evaluate $\int \frac{d x}{x^{7}-x}$.
4. Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+2 y^{2}-5 x y^{2}-6 y^{4}}{x^{2}+2 y^{2}+3 x^{2} y+4 x^{4}}$ or show that the limit does not exist.
5. Evaluate the integral $\int_{S} f d A$ where $f(x, y)=1 /(1-x y)$ and $S=[0,1] \times[0,1]$ is the unit square in the first quadrant. This is an improper integral; interpret this as

$$
\lim _{t \rightarrow 1^{-}} \int_{0}^{t} \int_{0}^{t} \frac{1}{1-x y} d x d y
$$

(Hint: you will probably need either to find an alternative description of the integrand f or to transform the domain S with a change of variables.)

Answers will soon appear at http://www.math.utexas.edu/users/rusin/Bennett/.

