ALBERT A. BENNETT CALCULUS PRIZE EXAM Dec 10 2019

Name:	UT EID:
Present Calculus Course:	Instructor:
Permanent Mailing Address:	
E-mail address:	
College (Natural Sciences, Engineering, etc.)	
Submit your solutions with all work shown on the sheets provided. No calculators	

allowed. (Suggestion: Work first on scrap paper that you don't submit; write up final solutions neatly and in order, with your name on all pages submitted.)

- 1. Find the positive number k for which the curves $y = \ln(x)$ and $y = x^k$ have exactly one point of intersection.
- 2. What is the minimum value of the sum of a convergent geometric series whose third term is 1 and whose other terms are all positive?
- **3.** Evaluate $\int \frac{dx}{x^7 x}$.
- 4. Compute $\lim_{(x,y)\to(0,0)} \frac{x^2 + 2y^2 5xy^2 6y^4}{x^2 + 2y^2 + 3x^2y + 4x^4}$ or show that the limit does not exist.
- 5. Evaluate the integral $\int_{S} f \, dA$ where f(x, y) = 1/(1 xy) and $S = [0, 1] \times [0, 1]$ is the unit square in the first quadrant. This is an improper integral; interpret this as

$$\lim_{t \to 1^{-}} \int_{0}^{t} \int_{0}^{t} \frac{1}{1 - xy} \, dx \, dy$$

(Hint: you will probably need either to find an alternative description of the integrand f or to transform the domain S with a change of variables.)

Answers will soon appear at http://www.math.utexas.edu/users/rusin/Bennett/ .