
ALBERT A. BENNETT CALCULUS PRIZE EXAM Dec 07, 2021

1. Compute the value f ′′(0) of the second derivative of f at x = 0, where

f(x) =
(1 + 2x)1/2(1 + 4x)1/4(1 + 6x)1/6 . . . (1 + 14x)1/14

(1 + 3x)1/3(1 + 5x)1/5(1 + 7x)1/7 . . . (1 + 15x)1/15

ANSWER: We will first compute the derivative of F (x) = ln(f(x)). Elementary proper-

ties of the logarithm allow us to rewrite this function as an alternating sum

F (x) =
ln(1 + 2x)

2
− ln(1 + 3x)

3
+

ln(1 + 4x)

4
− ln(1 + 5x)

5
+. . .+

ln(1 + 14x)

14
− ln(1 + 15x)

15

With the Chain Rule we find the derivative of ln(1+nx)
n to be 1/(1 + nx) = (1 + nx)−1; in

turn, the derivative of that is −n/(1 + nx)2. Thus we have

F ′(x) =
1

1 + 2x
− 1

1 + 3x
+

1

1 + 4x
− 1

1 + 5x
+ . . .+

1

1 + 14x
− 1

1 + 15x

F ′′(x) = − 2

(1 + 2x)2
+

3

(1 + 3x)2
− 4

(1 + 4x)2
+

5

(1 + 5x)2
− . . .− 14

(1 + 14x)
+

15

(1 + 15x)2

In particular, F ′(0) = 0 and F ′′(0) = 7.

These calculations are helpful because F ′(x) = f ′(x)/f(x), and so we may compute

f ′(x) = f(x)F ′(x). Then it follows from the Product Rule that f ′′(x) = f(x)F ′′(x) +

f ′(x)F ′(x) = f(x)F ′′(x) + f(x) (F ′(x))2. In particular, since f(0) = 1 we have f ′′(0) =

1 · 7 + 1 · 02 = 7.

2. Evaluate the limit:

lim
x→0+

(
1 + 2x + 3x

3

)1/x

ANSWER: The expression f(x) inside the parentheses approaches 1 as x → 0. For

example 3x = eln(3)x will approach e0 = 1 since the exponential function is continuous.

Similarly 2x → 1.

However, the limit of an expression of the form E(x) = f(x)g(x), whose base f(x)

tends to 1 and whose exponent g(x) increases to +∞, must be treated carefully: this is



an “Indeterminate Form”. (You might compare to the case f(x) = 1 + x and g(x) = 1/x,

whose limit is e.) We may compute instead

ln

(
lim
x→0+

E(x)

)
= lim
x→0+

ln(E(x)) = lim
x→0+

g(x) ln(f(x)) = lim
x→0+

ln(f(x))

x

which we will do by using L’Hôpital’s Rule. The derivative of ln(f(x)) is a fraction

f ′(x)/f(x) whose denominator we have already noted tends to 1. As for its numera-

tor, we recall that d
dxa

x = ln(a) ax so f ′(x) = 1
3 (ln(2) 2x + ln(3) 3x), which approaches

1
3 (ln(2)+ ln(3)) = 1

3 ln(6) as x→ 0. So f ′(x)/f(x)→ 1
3 ln(6) and then by L’Hopital’s Rule

ln(E)→ ln(61/3). Thus our original expression E(x) approaches 3
√

6 as x→ 0.

3. Evaluate the limit:

lim
n→∞

n∑
k=1

(
k2

n3
+

√
k

n3/2

)

ANSWER: This sum may be written
∑n
k=1

(
1
n

)
f( kn ) where f(x) = x2 +

√
x. But this

is exactly a Riemann sum for the function f on the interval [0, 1], namely the sum that

corresponds to a partition of that interval into n equal subintervals (of width 1/n), with the

function f evaluated at the right-hand endpoint of each subinterval. (The kth subinterval

has endpoints x = (k − 1)/n and x = k/n.) So we are asked to compute the limit of

some Riemann sums of this function on that interval, and in the limit, the widths of

these subintervals tends to zero. This is the very definition of the (Riemann) integral of

the function! Thus our limit is the same as
∫ 1

0
f(x) dx, which we evaluate as the sum of∫ 1

0
x2 dx = (1/3) and

∫ 1

0
x1/2 dx = (2/3). Therefore the value of the original limit is 1 .

4. Compute the integral: ∫
dθ

5 + 2 cos(θ)

.

ANSWER: There are a few different ways to discover an antiderivative. Two of them



use the following preliminary result:∫
dθ

a+ b cos2(θ)
=

∫
sec2(θ) dθ

a sec2(θ) + b

=

∫
du

(a+ b) + au2
where u = tan(x)

=
1

a+ b

∫
dv

1 + v2
where v =

√
a
a+b u

=
1√

a(a+ b)
arctan

(√
a

a+ b
tan(θ)

)

Now, the function which you were asked to antidifferentiate did not include the square

of the cosine. But we can reduce the original question to this one in a couple of ways. If

we multiply by the conjugate we get∫
(5− 2 cos(θ)) dθ

25− 4 cos2(θ)
= 5

∫
dθ

25− 4 cos2(θ)
− 2

∫
cos(θ) dθ

21 + 4 sin2(θ)

=
1√
21

arctan

(
5√
21

tan(θ)

)
− 1√

21
arctan

(
2√
21

sin(θ)

)
where the first antiderivative is the formula of the previous paragraph, and the second is

computed with a substitution u = sin(θ).

Alternatively, we may use the trig identity cos(θ) = 2 cos2(θ/2) − 1 to rewrite the

original problem as
∫

2dφ
3+4 cos2(φ) where φ = θ/2, giving an antiderivative

2√
21

arctan

(√
3

7
tan(θ/2)

)
This is actually identical to the previous antiderivative; using trig identities, each may be

reduced to
1√
21

arctan

( √
21 sin(t)

2 + 5 cos(t)

)
.

This second approach is actually quite general: given any rational function of the six

trig functions, the substitution t = tan(θ/2) works wonders: you can check that

cos(θ) =
1− t2

1 + t2
, sin(θ) =

2t

1 + t2
, dθ =

2 dt

1 + t2

so that any integral of such a function will be transformed into an integral of a rational

function of t, which can be methodically antidifferentiated using the technique of Partial

Fractions.



5. Let f(x) = 1/(1 +x+x2) and let
∑∞
n=0 cnx

n = c0 + c1x+ c2x
2 + . . . be the Maclaurin

series for f (i.e. the Taylor series of f around the origin). Compute c36 − c37 + c38.

ANSWER: First recall the factorization x3 − 1 = (1 − x)(x2 + x + 1). Thus f(x) =

(1 − x)(1 − x3)−1. We may view the second factor as the sum of an infinite geometric

series 1 + x3 + x6 + x9 + . . . (which is convergent if |x| < 1), and so (for x in that interval)

we have f(x) = (1 − x)
∑
x3k =

∑
x3k −

∑
x3k+1. In other words, cn = 1 if n is a

multiple of 3, cn = −1 if n is one more than a multiple of 3, and cn = 0 otherwise. Thus

c36 − c37 + c38 = 1− (−1) + 0 = 2.


