Name:
Present Calculus Course: \qquad
UT EID: \qquad

Permanent Mailing Address: \qquad

E-mail address:

School (Natural Sciences, Engineering, etc.)
Show all work in your solutions; turn in your solutions on the sheets provided. (Suggestion: Do preliminary work on scratch paper that you don't turn in; write up final solutions neatly and in order; write your name on all pages turned in.)

1. Let $f(x)=\int_{0}^{x} \cos \left(t^{2}\right) d t$. Write the Maclaurin series (Taylor series centered at 0) for each of the following functions of x.

$$
\begin{array}{llll}
\text { (i) } & \cos (x) & \text { (iii) } & f(x) \\
\text { (ii) } & \cos \left(x^{2}\right) & \text { (iv) } & g(x)=f\left(x^{2}\right)
\end{array}
$$

2. Find the equations of all lines which are tangent to the curve $y=x^{3}-x$ and are perpendicular to the line $y=4 x+5$.
3. Let a curve be given by the parametric equations

$$
\begin{aligned}
& x=e^{t} \sin t-e^{t} \cos t \\
& y=e^{t} \sin t+e^{t} \cos t
\end{aligned}
$$

Find the arclength of the curve from $t=0$ to $t=\ln (2)$.
4. Suppose that x and y are given as functions of s and t by the equations

$$
x=e^{s t}, \quad y=s^{2} t^{3}
$$

Suppose also that s is a function of t such that $d s / d t=\left(1+t^{3}\right)^{-1}$ Then y can be regarded as a function of x. Compute $d y / d x$ in terms of s and t.
5. Let $f(x)= \begin{cases}x^{2} \sin (1 / x) & \text { if } x \neq 0, \\ 0 & \text { if } x=0 .\end{cases}$
(i) Show that $\lim _{x \rightarrow 0} f^{\prime}(x)$ does not exist.
(ii) Using the definition of the derivative, show that $f^{\prime}(0)=0$.

