ALBERT A. BENNETT CALCULUS EXAM ANSWERS 5/9/09

1. Find the largest possible volume for a right circular cone inscribed in a sphere of radius one. Recall that the volume of a right circular cone is $1 / 3 h A$ where h is the height and A is the area of the base.

ANSWER: A cone of maximal volume would have its central axis run through the center of the sphere - otherwise a parallel translation would allow the cone to grow taller. By the same reasoning, a maximal cone would touch the sphere at its tip and base; but with the central axis now being on a diameter of the sphere, once the base touches the sphere, the entire circle at the base of the cone would be contained in the sphere. So now a plane passing through that central axis would show an isoceles triangle touching a circle in three points.

If we draw coordinate axes with the center of the circle as the origin and with the axis of the cone as the y-axis, then the circle is the set of points (x, y) having $x^{2}+y^{2}=1$. The apex of the cone is the point $(0,1)$ and the other two vertices are the points $(\pm a, b)$ for some $a>0$ and b having $a^{2}+b^{2}=1$. The height h of the cone would be $1-b$ and the radius of its circular base would be a, so the volume would be $(1 / 3) h A=(1 / 3)(1-b)\left(\pi a^{2}\right)$. Since $a^{2}+b^{2}=1$ this may be written $(\pi / 3)(1-b)\left(1-b^{2}\right)$.

So our goal is to maximize the value of this function of b, on the interval $[-1,1]$. We may use two important theorems: (1) A continuous function on a closed and bounded interval must attain a maximum somewhere, and (2) if the function attains a maximum at a point b then the first derivative vanishes at b (or fails to exist at b) unless b is an endpoint. Well, the derivative $(\pi / 3)\left(-1-2 b+3 b^{2}\right)$ vanishes iff $b=(2 \pm 4) / 6$ i.e. iff $b=1$ or $b=-1 / 3$. With the endpoints there are then only three candidate values of b to maximize this function: $b=-1, b=-1 / 3, b=+1$, and they give values of $0,32 \pi / 81,0$ respectively. Clearly the middle option is the best of these three.

So the largest possible cone has a height of $\frac{4}{3}$, a radius of $\frac{2 \sqrt{2}}{3}$, and a volume of $\frac{32}{81} \pi$.
2. (i) Find the distance from the point $(3,6,5)$ to the plane $x+2 y+3 z=2$.
(ii) Find the distance between the parallel planes $x+2 y+3 z=2$ and $x+2 y+3 z=0$.

In working parts (i) and (ii) do not use the general formula for the distance from a point to a plane for the distance between two parallel planes unless you prove it.

ANSWER: The distance from the point $P=(3,6,5)$ to another point (x, y, z) is of course $\sqrt{(x-3)^{2}+(y-6)^{2}+(z-5)^{2}}$. If this latter point is known to lie on the given plane then $x=2-2 y-3 z$ so the distance may be rewritten as $\sqrt{(1+2 y+3 z)^{2}+(y-6)^{2}+(z-5)^{2}}$. When we speak of the distance from P to a plane, we mean the minimum of all possible distances to the points in the plane, so we simply choose y and z so as to make this distance minimal. It is sufficient to make the square of that distance minimal (since squaring is an increasing function), and that will happen when the two partial derivatives vanish; that is, the closest point of the plane to P has

$$
2(1+2 y+3 z)^{1}(2)+2(y-6)^{1}=0 \quad \text { and } \quad 2(1+2 y+3 z)^{1}(3)+2(z-5)^{1}=0
$$

These are two linear equations $5 y+6 z=4,6 y+10 z=2$ whose unique solution is $y=$ $2, z=-1$. The point Q on the plane with these coordinates also has $x=2-2 y-3 z=1$. The distance from $P=(3,6,5)$ to $Q=(1,2,-1)$ is $2 \sqrt{14}$.

In exactly the same way we can determine the distance from any point $P=(a, b, c)$ to this plane; the point on the plane that is closest to P turns out to be

$$
\frac{1}{14}(2+13 a-3 c-2 b, 4-2 a-6 c+10 b, 6-3 a+5 c-6 b)
$$

whose distance from P is

$$
\frac{|a+2 b+3 c-2|}{\sqrt{14}}
$$

(NB: This is the "formula" to which the problem refers: the distance from (a, b, c) to the plane $A x+B y+C z=D$ is $\frac{|A a+B b+C c-D|}{\sqrt{A^{2}+B^{2}+C^{2}}}$.)

So for example the distance from the point $(-27,6,5)$ to the given plane would be $|(-27)+12+15-2| / \sqrt{14}=2 / \sqrt{14}=\sqrt{14} / 7$. I mention this point because it lies in the other plane described in (ii). Of course when two planes are parallel, every point in the one plane is the same distance from the other plane, so $2 / \sqrt{14}$ is then the distance between the planes.

An alternative solution simply computes the length of a perpendicular vector $\lambda\langle 1,2,3\rangle$ which must be added to any point in the one plane to obtain a point in the other plane; for example starting from the origin we want $\lambda+2(2 \lambda)+3(3 \lambda)=2$, which requires $\lambda=1 / 7$, meaning that the origin (which is in one plane) is nearest to $(1 / 7,2 / 7,3 / 7)$ in the other plane; the distance between these is $\sqrt{14} / 7$.
3. Compute the sum $\sum_{n=0}^{\infty}\left(3+(-1)^{n}\right)^{-n}$.
(Hint: Write the first several terms of the series.)
ANSWER: Taking the hint, we write the series as

$$
\frac{1}{4^{0}}+\frac{1}{2^{1}}+\frac{1}{4^{2}}+\frac{1}{2^{3}}+\frac{1}{4^{4}}+\frac{1}{2^{5}}+\ldots
$$

This series is absolutely convergent (each term is positive and bounded by the terms of the convergent geometric series $\sum 1 / 2^{n}$) so we may rearrange the terms without affecting the sum. The terms with powers of 4 in them are

$$
\frac{1}{4^{0}}+\frac{1}{4^{2}}+\frac{1}{4^{4}}+\ldots=\frac{1}{16^{0}}+\frac{1}{16^{1}}+\frac{1}{16^{2}}+\ldots
$$

which is a geometric series with sum $1 /(1-(1 / 16))=16 / 15$. The other terms in the original series are

$$
\frac{1}{2^{1}}+\frac{1}{2^{3}}+\frac{1}{2^{5}}+\ldots
$$

which is a geometric series too, and sums to $(1 / 2) /(1-(1 / 4))=2 / 3$.
Thus the original series sums to $16 / 15+2 / 3=26 / 15$.
4. Find the equation of each line which passes through the origin and is tangent to the curve $y=x^{4}+x^{3}-x^{2}+2 x$ at some point.

ANSWER: The point on the curve that has x coordinate equal to some number a obviously has a y coordinate of $b=a^{4}+a^{3}-a^{2}+2 a$. The slope of the tangent line at this point is $m=4 a^{3}+3 a^{2}-2 a+2$. On the other hand the slope of the line that connects (a, b) to the origin is $m^{\prime}=b / a=a^{3}+a^{2}-a+2$. These lines will be equal iff they have the same slope; but $m=m^{\prime}$ iff $0=3 a^{3}+2 a^{2}-a=a(3 a-1)(a+1)$. So the points in question are those with $a=0,1 / 3$, or -1 . In each case the line is $y=m^{\prime} x$, so we find the lines to be these three:

$$
y=2 x, \quad y=\frac{49}{27} x, \quad y=3 x
$$

5. Compute $\int_{-1}^{0} \frac{1}{(x+2)^{3} \sqrt{x^{2}+4 x+3}} d x$.

ANSWER: Note that this is am improper integral, the integrand being undefined at $x=-1$. So we will need to find an antiderivative to evaluate $\int_{a}^{0} f(x) d x$ for $a \rightarrow(-1)^{+}$.

A sequence of small substitutions will make the integrand better. First let $x=u-2$ so the integral is

$$
\int \frac{1}{u^{3} \sqrt{u^{2}-1}} d u
$$

Then write $u=\sec (\theta)$, where (since $u \in[1,2]$) we may assume $\theta>0$ and thus $\sqrt{u^{2}-1}=$ $\tan (\theta)$ (rather than $-\tan (\theta)$). Then $d u=\sec (\theta) \tan (\theta) d \theta$ and the integral becomes

$$
\int \frac{1}{\sec ^{2}(\theta)} d \theta=\int \cos ^{2}(\theta) d \theta
$$

This is a familiar integral: we may use a trigonometric identity to write $\cos ^{2}(\theta)=\frac{1}{2}(1+$ $\cos (2 \theta))$ and then integrate to get an antiderivative $\frac{1}{2} \theta+\frac{1}{4} \sin (2 \theta)=u \frac{1}{2} \theta+\frac{1}{2} \sin (\theta) \cos (\theta)$. In terms of the previous variables this is

$$
\frac{1}{2} \arccos \left(\frac{1}{u}\right)+\frac{1}{2} \sqrt{1-\left(\frac{1}{u}\right)^{2}}\left(\frac{1}{u}\right)
$$

and then

$$
\frac{1}{2} \arccos \left(\frac{1}{x+2}\right)+\frac{\sqrt{x^{2}+4 x+3}}{2(x+2)^{2}}
$$

At $x=0$ this has the value $\pi / 6+\sqrt{3} / 8$, and as x approaches -1 from above, the value approaches 0 . So the value of the improper integral is exactly

$$
\frac{\pi}{6}+\frac{\sqrt{3}}{8}
$$

Alternatively, one might use the substitution $u=\sqrt{v+1}$ and then $v=w^{2}$ to get a rational integrand, which is a standard Calculus-II topic.

