ALBERT A. BENNETT CALCULUS PRIZE EXAM

Name:
Present Calculus Course: \qquad
UT EID:
Instructor: \qquad
Permanent Mailing Address: \qquad

E-mail address:

School (Natural Sciences, Engineering, etc.)
Show all work in your solutions; turn in your solutions on the sheets provided. (Suggestion: Do preliminary work on scratch paper that you don't turn in; write up final solutions neatly and in order; write your name on all pages turned in.)

1. Find the largest possible volume for a right circular cone inscribed in a sphere of radius one. Recall that the volume of a right circular cone is $1 / 3 h A$ where h is the height and A is the area of the base.
2. (i) Find the distance from the point $(3,6,5)$ to the plane $x+2 y+3 z=2$.
(ii) Find the distance between the parallel planes $x+2 y+3 z=2$. and $x+2 y+3 z=0$.

In working parts (i) and (ii) do not use the general formula for the distance from a point to a plane for the distance between two parallel planes unless you prove it.
3. Compute the sum $\sum_{n=0}^{\infty}\left(3+(-1)^{n}\right)^{-n}$.
(Hint: Write the first several terms of the series.)
4. Find the equation of each line which passes through the origin and is tangent to the curve $y=x^{4}+x^{3}-x^{2}+2 x$ at some point.
5. Compute $\int_{-1}^{0} \frac{1}{(x+2)^{3} \sqrt{x^{2}+4 x+3}} d x$.

