Name:
Present Calculus Course: \qquad
UT EID:
Instructor: \qquad
Permanent Mailing Address: \qquad

E-mail address:

School (Natural Sciences, Engineering, etc.)
Show all work in your solutions; turn in your solutions on the sheets provided. (Suggestion: Do preliminary work on scratch paper that you don't turn in; write up final solutions neatly and in order; write your name on all pages turned in.)

1. Find the equation of the plane that passes through the points $(1,2,2)$ and $(-1,1,3)$ and is parallel to the line $x=1+2 t, y=4-t, z=3 t$.
2. Let $f(x)=\sin \left(x^{3}\right)$. Find the $99^{\text {th }}$ derivative of f evaluated at 0 . That is, find $f^{(99)}(0)$.
3. Find the point on the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ that is farthest from the line $2 x+y=10$.
4. Let C_{1} be the solid cylinder in 3-dimensional space consisting of all points whose distance from the x-axis is not greater than 6 . Let C_{2} be the solid cylinder consisting of all points whose distance from the y-axis is not greater than 6 . If V is the intersection of C_{1} and C_{2}, find the volume of V. (Hint: If T is a plane parallel to the $x y$-plane, what does the intersection of T with V look like?)
5. Let f be a $3^{r d}$ degree polynomial. That is, $f(x)=a x^{3}+b x^{2}+c x+d$ where $a \neq 0$. Show that there is at least one number x_{0} such that $f\left(x_{0}\right)=0$.
