ALBERT A. BENNETT CALCULUS PRIZE EXAM

Name:	UT EID:
Present Calculus Course:	Instructor:
Permanent Mailing Address:	
E-mail address:	
School (Natural Sciences, Engineerin	.g, etc.)
Show all work in your solutions: turn	in your solutions on the sheets provided.

5/8/10

(Suggestion: Do preliminary work on scratch paper that you don't turn in; write up final solutions neatly and in order; write your name on all pages turned in.)

- 1. Find the equation of the plane that passes through the points (1,2,2) and (-1,1,3) and is parallel to the line x = 1 + 2t, y = 4 t, z = 3t.
- **2.** Let $f(x) = \sin(x^3)$. Find the 99th derivative of f evaluated at 0. That is, find $f^{(99)}(0)$.
- **3.** Find the point on the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ that is farthest from the line 2x + y = 10.
- 4. Let C_1 be the solid cylinder in 3-dimensional space consisting of all points whose distance from the x-axis is not greater than 6. Let C_2 be the solid cylinder consisting of all points whose distance from the y-axis is not greater than 6. If V is the intersection of C_1 and C_2 , find the volume of V. (Hint: If T is a plane parallel to the xy-plane, what does the intersection of T with V look like?)
- 5. Let f be a 3^{rd} degree polynomial. That is, $f(x) = ax^3 + bx^2 + cx + d$ where $a \neq 0$. Show that there is at least one number x_0 such that $f(x_0) = 0$.