Name: \qquad
Present Calculus Course: \qquad
UT EID:
Instructor: \qquad
Permanent Mailing Address: \qquad

E-mail address: \qquad
School (Natural Sciences, Engineering, etc.)
Show all work in your solutions; turn in your solutions on the sheets provided. (Suggestion: Do preliminary work on scratch paper that you don't turn in; write up final solutions neatly and in order; write your name on all pages turned in.)

1. Determine whether these series converge or diverge. (Be sure to justify your answer.)
(a) $\sum_{n=1}^{\infty} \frac{1}{(3 n-2)^{n+(1 / 2)}}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n(n-1) / 2}}{n}=1-\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\ldots$
2. Compute the following limit, or show that it does not exist:

$$
\lim _{x \rightarrow 0} \frac{x^{3} \sin \left(\frac{1}{x}\right)}{\ln \left(1+x^{2}\right)}
$$

3. Compute the first three terms $a_{0}+a_{1} x+a_{2} x^{2}$ of the Maclaurin series (i.e. the Taylor series at 0) for

$$
f(x)=\frac{5 x-7}{(x-1)(x-2)}
$$

4. Find a point which is equidistant from all four planes

$$
x=0 \quad y=0 \quad z=0 \quad 2 x+3 y+6 z=36
$$

5. Find all the critical points of the function below, and state whether they are local minima, local maxima, or saddle points:

$$
f(x, y)=1-\left(x^{2}-1\right)^{2}-\left(x^{2} y-x-1\right)^{2} .
$$

