1. Determine whether series (a) converges or diverges, and give the radius of convergence for series (b). (Be sure to justify your answer.)

$$
\text { (a) } \sum_{n=1}^{\infty} \frac{1}{n} \sin \left(\frac{1}{\pi n}\right) \quad \text { (b) } \sum_{n=1}^{\infty} \frac{n!x^{n}}{n^{n}}
$$

ANSWER: Series (a) converges by comparison to the convergent p-series $\sum \frac{1}{n} \frac{1}{\pi n}=$ $\frac{1}{\pi} \sum \frac{1}{n^{2}}$ because $\sin (x)<x$ for all positive x.

For series (b), the Ratio Test guarantees convergence when $\lim \left|a_{n+1} / a_{n}\right|<1$, i.e. when

$$
1>\lim (n+1)|x| n^{n} /(n+1)^{n+1}=\lim |x|(n /(n+1))^{n}=|x| / e
$$

That is, the series converges if $-e<x<e$; likewise the series diverges if $x>e$ or $x<-e$. Alternatively, this series is easily handled using Stirling's Approximation for $n!$.

Remarks: it's not clear what (a) converges to but we can estimate it as closely as we like with rational multiples of π, using the fact that $\sin (x)$ has a Taylor series which is alternating. For example, for positive $x<1, \sin (x)$ lies between $x-x^{3} / 6$ and $x-x^{3} / 6+$ $x^{5} / 120$; this gives upper and lower bounds for $\sin (1 /(\pi n))$ which we can then sum over all n : writing $\zeta(k)$ for $\sum_{n \geq 1}\left(1 / n^{k}\right)$ we see our original series lies between $\zeta(2) / \pi-\zeta(4) /\left(6 \pi^{3}\right)$ and $\zeta(2) / \pi-\zeta(4) /\left(6 \pi^{3}\right)+\zeta(6) /\left(120 \pi^{5}\right)$. But for even integer values of k, it is known that $\zeta(k)$ is a rational multiple of π^{k}; for example, $\zeta(2)=\pi^{2} / 6, \zeta(4)=\pi^{4} / 90$, and $\zeta(6)=\pi^{6} / 945$. Thus our original sum lies between $\pi / 6-\pi / 540$ and $\pi / 6-\pi / 540+\pi / 113400$. In a similar way we can write our original sum as a different infinite series: it's

$$
\pi \sum_{i \geq 1}(-1)^{i-1} \frac{\zeta(2 i)}{\pi^{2 i}(2 i-1)!}=\pi \sum_{i \geq 1} \frac{B_{2 i} 2^{2 i-1}}{(2 i)!(2 i-1)!}
$$

where B_{j} is the sequence of the Bernoulli numbers, a fascinating sequence of rational numbers that appears for example in the Taylor expansion $\frac{t}{e^{t}-1}=\sum_{j \geq 0} \frac{B_{j}}{j!} t^{j} \mathrm{I}$ don't know the sum of my series but the first few terms are
$\pi\left(\frac{1}{6}-\frac{1}{540}+\frac{1}{113400}-\frac{1}{47628000}+\frac{1}{33949238400}-\frac{691}{25487390728800000}+\frac{1}{56800470767040000} \ldots\right)$
In this way we can rapidly evaluate the original sum to great precision as
$0.51780864919531276130446652093666998669158947220051543498565784521736660169499 \ldots$ but I don't recognize this number ...

At the endpoints, series (b) will also diverge because the individual terms do not even go to zero - every one is larger (in magnitude) than the one before it. Indeed, as noted above, the ratio of consecutive terms is, in magnitude, equal to $e /\left(1+\frac{1}{n}\right)^{n}$, and this ratio is greater than one. (Its logarithm is $1-n \log (1+1 / n)$, but when $0<x<1, \log (x)<x$ so $\log (1+1 / n)<1 / n$ and thus $\log \left(\left|a_{n+1} / a_{n}\right|\right)>0$ so $\left.\left|a_{n+1} / a_{n}\right|\right)>1$.)
2. Compute the following limit, or show that it does not exist:

$$
\lim _{x \rightarrow 1}\left(\frac{x}{x-1}-\frac{1}{\ln (x)}\right)
$$

ANSWER: The limit is $\frac{1}{2}$, as shown by the following transformations:

$$
\begin{aligned}
\lim _{x \rightarrow 1}\left(\frac{x}{x-1}-\frac{1}{\ln (x)}\right) & =\lim _{x \rightarrow 1} \frac{x \ln (x)-x+1}{(x-1) \ln (x)} \\
& =\lim _{x \rightarrow 1} \frac{\ln (x)}{\frac{(x-1)}{x}+\ln (x)} \text { by L'H. Rule } \\
& =\lim _{x \rightarrow 1} \frac{x \ln (x)}{(x-1)+x \ln (x)} \\
& =\lim _{x \rightarrow 1} \frac{1+\ln (x)}{2+\ln (x)} \text { by L'H. Rule again }
\end{aligned}
$$

and this last limit is $1 / 2$. (This example was taken from Wikipedia.)
3. Compute the first four terms $a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ of the Maclaurin series (i.e. the Taylor series at 0) for

$$
f(x)=\ln \left(1-x+x^{2}\right)
$$

ANSWER: Since $1-x+x^{2}=\frac{1+x^{3}}{1+x}$ we may write $f(x)=\ln \left(1+x^{3}\right)-\ln (1+x)$. But the Maclaurin series for natural logarithms is $\ln (1+x)=x-x^{2} / 2+x^{3} / 3-\ldots$ so also $\ln \left(1+x^{3}\right)=x^{3}-x^{6} / 2 \ldots$ and thus our function expands as

$$
f(x)=0-x+\frac{1}{2} x^{2}+\frac{2}{3} x^{3}+\ldots
$$

The answer may also be obtained fairly easily by substituting $-x+x^{2}$ for x in the series for $\ln (1+x)$.
4. Find the equation of a plane that contains the points $P_{1}=(1,3,4)$ and $P_{2}=(1,2,3)$ and also forms a 60° angle with the plane $x+y-2 z=6$. (There are two correct answers; you need find only one.)

ANSWER: The angle between two planes equals the angle between their normal vectors, so our normal vector v must be at a 60 -degree angle to $u=\langle 1,1,-2\rangle$. That means $\frac{u \cdot v}{\|u\|\|v\|}=\cos (60)=1 / 2$. Our normal vector is also perpendicular to every vector in our plane, including the vector $P_{2} P_{1}=\langle 0,1,1\rangle$.

So if our normal vector is, say, $v=\langle A, B, C\rangle$ then $B+C=0$ and $A+B-2 C=$ $(1 / 2)(\sqrt{6})\left(\sqrt{A^{2}+B^{2}+C^{2}}\right)$. The first equation says $C=-B$; then squaring the second equation shows $(A+B-2 C)^{2}=(6 / 4)\left(A^{2}+B^{2}+C^{2}\right)$, i.e. $(A+3 B)^{2}=(3 / 2)\left(A^{2}+2 B^{2}\right)$ or simply $A^{2}-12 A B-12 B^{2}=0$. Thus we must have $A=(6 \pm 4 \sqrt{3}) B$ so that our normal vector $\langle A, B, C\rangle$ is parallel to $\langle 6 \pm 4 \sqrt{3}, 1,-1\rangle$.

Then the plane is $(6 \pm 4 \sqrt{3}) x+y-z=D$ for some constant D, and we can compute the value of D since the points P_{i} are to be on the plane: $D=(6 \pm 4 \sqrt{3})+2-3=5 \pm 4 \sqrt{3}$. That is, the planes are $(6 \pm 4 \sqrt{3}) x+y-z=5 \pm 4 \sqrt{3}$.
N.B.: My apologies: I intended that the algebra would work out nicely for you, which it does when the cosine is $\sqrt{3} / 2$-i.e. when the angle is 30°, not 60°. I goofed! Sorry...
5. Find the point (x, y) on the ellipse $x^{2}+4 y^{2}=74$ where the function $F(x, y)=$ $(x+12 y)+(x+12 y)^{3}$ is largest.

ANSWER: First note that $F(x, y)=g(f(x, y))$ where $g(u)=u+u^{3}$ and $f(x, y)=x+12 y$. The reason to make this observation is that g is an increasing function of one variable (its derivative is $\left.g^{\prime}(u)=1+3 u^{2}>0\right)$ and therefore the value of g is at its largest when its input is at its largest. Therefore we need only maximize $f(x, y)$ on the ellipse. But that is standard Lagrange Multipliers: you might want first to observe that f is continuous and the ellipse is "compact", which guarantees that there is some point on the ellipse where f will be maximized; then Lagrange Multipliers tells us where such a point must be. We want to maximize f on the set where $k(x, y)=0$, where $k(x, y)=x^{2}+4 y^{2}-74$, and so (since there are no places where f^{\prime} or k^{\prime} fail to exist) at the critical point, f^{\prime} and k^{\prime} will be parallel. These derivatives are $\langle 1,12\rangle$ and $\langle 2 x, 8 y\rangle$ respectively, so at a critical point, $8 y=24 x$. But if $y=3 x$ and $x^{2}+4 y^{2}=74$ then $37 x^{2}=74$, so $x= \pm \sqrt{2}$ and $y=3 x= \pm 3 \sqrt{2}$. At these points, $f(x, y)=x+12 y= \pm 37 \sqrt{2}$, so clearly the maximum value of f, and thus of F, is at $(x, y)=(\sqrt{2}, 3 \sqrt{2})$.

You can also use Lagrange Multipliers directly on F; the vector $F^{\prime}(x, y)$ is simply the vector $f^{\prime}(x, y)$ stretched by a factor of $g^{\prime}(f(x, y))$ and in particular F^{\prime} and f^{\prime} always point in the same direction. Using f instead of F^{\prime} merely simplifies the algebra.

