ALBERT A. BENNETT CALCULUS PRIZE EXAM May 4 2013

Name:	UT EID:
Present Calculus Course:	Instructor:
Permanent Mailing Address:	
E-mail address: School (Natural Sciences, Engineering, etc.)	

Show all work in your solutions; turn in your solutions on the sheets provided. (Suggestion: Do preliminary work on scratch paper that you don't turn in; write up final solutions neatly and in order; write your name on all pages turned in.)

- **1.** For each real number a, evaluate $\int_0^\infty e^{ax} \cos(x) dx$ or explain why the integral diverges.
- 2. Evaluate $\sum_{n=2}^{\infty} \frac{1}{(n-1)(n+2)}$ or explain why the series diverges.
- 3. The polar equation of the curve shown in the attached figure is $r = e^{-\theta/10}$. Assume that the pattern of shaded and unshaded sections continues ad infinitum. What is the area of the shaded region? Simplify your answer as much as possible.
- 4. Here are four lines in space:

$$L_1: \{x = 1, y = 0\}$$
 $L_2: \{y = 1, z = 0\}$ $L_3: \{z = 1, x = 0\}$ $L_4: \{x = y = -6z\}$

For partial credit, find a line that intersects both L_1 and L_2 . For full credit, find a line that intersects all three of L_1 , L_2 , and L_3 . For extra credit, find a line that meets all four of the lines L_i .

5. Find a differentiable function f(x, y) defined in the first quadrant of the plane which has this property: at each point (x, y) the gradient $\nabla f(x, y)$ is perpendicular to the vector $\langle x, y \rangle$ pointing directly away from the origin.

For extra credit: Is there such a function f defined on all of the plane?