Name: \qquad

UT EID:

\qquad
Present Calculus Course: \qquad Instructor: \qquad
Permanent Mailing Address: \qquad

E-mail address:

College (Natural Sciences, Engineering, etc.)

Show all work in your solutions; turn in your solutions on the sheets provided. No calculators allowed. (Suggestion: Do preliminary work on scratch paper that you don't turn in; write up final solutions neatly and in order; write your name on all pages turned in.)

1. Which is larger - e^{π} or π^{e} ? You must answer without a calculator of course, and memorized digits are also useless unless you can explain how those digits are computed. Use some calculus to describe these numbers.
2. Compute the limit

$$
\lim _{n \rightarrow \infty} \frac{1^{4}+2^{4}+3^{4}+\ldots+n^{4}}{n^{5}}
$$

3. Compute $\int \frac{1}{\sqrt{x}+\sqrt[3]{x}} d x$
4. Compute

$$
F(x)=\int_{0}^{2} \frac{\partial}{\partial y}\left(\frac{x^{y}-1}{\ln (x)}\right) d y
$$

and

$$
\int_{0}^{1} F(x) d x=\int_{0}^{1} \int_{0}^{2} \frac{\partial}{\partial y}\left(\frac{x^{y}-1}{\ln (x)}\right) d y d x
$$

5. Describe the set of all points which are equidistant between the planes $x+y+2 z=4$ and $2 x+5 y+5 z=10$.

Answers will be posted to http://www.math.utexas.edu/users/rusin/Bennett/ shortly.

