
BENNETT CALCULUS PRIZE EXAM — ANSWERS May 8 2018

1. Compute (with explanation) the following limit, or show that it does not exist:

lim
x→0

x2 sin( 1
x )

sin(x)

ANSWER: The limit is zero.

The function may be written as x
sin(x) · (x sin(1/x)); the first factor approaches 1 as

x→ 0. The second factor is bounded by |x| and hence approaches zero, and so the product

approaches zero too.

Note that L’Hôpital’s Rule does not help. It considers the limit of the quotient of the

derivatives, that is, it considers

lim
x→0

2x sin(1/x)− cos(1/x)

cos(x)

and asserts that if this limit exists then the original limit will exist as well and the two

limits are equal. But in fact this latter limit does not exist and therefore L’Hôpital’s Rule

is silent. (The denominator approaches 1 and the first part of the numerator approaches

zero, but the second part of the numerator has no limit at zero because of oscillation.)

2. Compute the derivative of f(x) = xx
x

.

ANSWER: Since f(x) = eln(x)·x
x

we can use the Chain Rule and the Product Rule:

f ′(x) = f(x) ·
(
1
x · x

x + ln(x) d
dx (xx)

)
. Similarly the derivative of xx = ex ln(x) may be

computed as xx ·
(
1
xx+ ln(x)

)
so that f ′(x) = xx

x+x
(
1
x + ln(x) + ln(x)2

)
.

3. Compute

∫
sin(t) + cos(t)√

2 sin(t) cos(t)
dt. (Hint: if u = sin(t)− cos(t), what is u2?)

Extra Credit: Use this idea to evaluate

∫ √
tan(t) dt by first computing∫ √

tan(t) +
√

cot(t) dt and

∫ √
tan(t)−

√
cot(t) dt

ANSWER: If u = sin(t) − cos(t), then u2 = 1 − 2 sin(t) cos(t) and du = (sin(t) +

cos(t)) dt, so the integral becomes

∫
du√

1− u2
= arcsin(u) = arcsin(sin(t) − cos(t)) + C.

(Using the angle-addition formula, this may also be written as arcsin(
√

2 sin(t− π/4)).)



If we expand the original integrand into two fractions and multiply by
√

2, we see we

have shown that

∫ √
tan(t) +

√
cot(t) dt =

√
2 arcsin(sin(t) − cos(t)). In the same way

(using now u = sin(t) + cos(t)) we find that

∫ √
tan(t) −

√
cot(t) dt =

√
2

∫
−du√
u2 − 1

=

−
√

2 ln
(
u+

√
u2 − 1

)
. Now add these two integrals and divide by 2 to see∫ √

tan(t) dt =
1√
2

(
arcsin(sin(t)− cos(t))− ln

(
sin(t) + cos(t) +

√
2 sin(t) cos(t)

))
+ C

Alternatively, one could let u =
√

2 cot(x) so that u2 = 2 cot(x) and −4u du =

4 csc2(x) dx = (4 + u4) dx; this allows the use of Partial Fractions:∫ √
tan(x) dx =

√
2

∫
dx

u
=

1√
2

∫
(−8)du

4 + u4
=

1√
2

(∫
u− 2

u2 − 2u+ 2
du−

∫
u+ 2

u2 + 2u+ 2
du

)
which happens to be the very integral involved in the day’s Differential Equations exam!

4. Do these series converge or diverge? Explain.

(A)
∞∑

n=1

(−1)n
(

1 +
1

n

)−n
(B)

∞∑
n=1

(−1)n
2 + cos(πn)

n

ANSWER: Both series diverge. In each case the Alternating Series Test does not

apply because one of the three hypotheses of the theorem is not met.

In series (A), the terms strictly alternate and strictly decrease in magnitude, but the

magnitudes do not approach zero: lim(1 + 1
n )n = e so our terms’ magnitudes approach

1/e > 0. Of course, a series whose terms do not approach zero cannot converge.

In series (B) the terms strictly alternate and approach zero, but do not steadily de-

crease in magnitude: since cos(πn) = (−1)n, the magnitudes are
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Of course one might hope that the series might converge even if the Alternating Series

Test fails to prove this, but no, the series will definitely diverge because the partial sums

grow without bound: It’s not hard to check that for every integer n ≥ 1, the inequality

−1/(2n− 1) + 3/(2n) ≥ (1/2)/n holds, so the partial sums grow:(
−1

1

)
+

(
3

2

)
+

(
−1

3

)
+

(
3

4

)
+ . . .

(
−1

2n− 1

)
+

(
3

2n

)
≥ 1

2

(
1 +

1
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+
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+ . . .+

1

n

)
Since the harmonic series diverges (to +∞) our partial sums will also diverge.



5. Find the volume of the intersection of the solid bounded by the cylinders x2 +z2 = R2

and y2 + z2 = R2

ANSWER: We cut the volume in half if we look only at the points for which z > 0;

in half again if we look only where x > 0 and in half again by restricting to y > 0. Finally

we still have a figure symmetric across the plane x = y: half its volume is in the part where

y < x and the other half, where x < y.

So our volume will be 16 times the volume of the region that lies above the half-

quadrant of the xy plane where 0 < y < x, and below the graph of f(x, y) =
√
R2 − x2.

(Since we are in the lower half of the first quadrant, the other surface z =
√
R2 − y2 lies

above this one, that is, here we are automatically within the second cylinder as soon as we

are within the first.)

In short, our volume is 16
∫
D

√
R2 − x2 dA, where D is the triangle bounded by the

lines y = 0, y = x, and x = R. We compute this integral using Fubini’s Theorem:

V = 16

∫
D

√
R2 − x2 dA = 16

∫ x=R

x=0

∫ y=x

y=0

√
R2 − x2 dy dx = 16

∫ x=R

x=0

x
√
R2 − x2 dx

= 16(−1/3)(R2 − x2)3/2|x=R
x=0 = 16R3/3

That is, it’s 2/3 of the volume of the (2R)× (2R)× (2R)-box that contains our set.


