Name: \qquad UT EID: \qquad
Present Calculus Course: \qquad Instructor: \qquad
Permanent Mailing Address: \qquad

E-mail address:

\qquad
College (Natural Sciences, Engineering, etc.)
Show all work in your solutions; turn in your solutions on the sheets provided. No calculators allowed. (Suggestion: Work first on scrap paper that you don't submit; write up final solutions neatly and in order, with your name on all pages submitted.)

1. Compute (with explanation) the following limit, or show that it does not exist:

$$
\lim _{x \rightarrow 0} \frac{x^{2} \sin \left(\frac{1}{x}\right)}{\sin (x)}
$$

2. Compute the derivative of $f(x)=x^{x^{x}}$.
3. Compute $\int \frac{\sin (t)+\cos (t)}{\sqrt{2 \sin (t) \cos (t)}} d t$. (Hint: if $u=\sin (t)-\cos (t)$, what is u^{2} ?)

Extra Credit: Use this idea to evaluate $\int \sqrt{\tan (t)} d t$ by first computing

$$
\int \sqrt{\tan (t)}+\sqrt{\cot (t)} d t \quad \text { and } \quad \int \sqrt{\tan (t)}-\sqrt{\cot (t)} d t
$$

4. Do these series converge or diverge? Explain.

$$
\text { (A) } \sum_{n=1}^{\infty}(-1)^{n}\left(1+\frac{1}{n}\right)^{-n} \quad \text { (B) } \sum_{n=1}^{\infty}(-1)^{n} \frac{2+\cos (\pi n)}{n}
$$

5. Find the volume of the intersection of the solid bounded by the cylinders $x^{2}+z^{2}=R^{2}$ and $y^{2}+z^{2}=R^{2}$

Answers will soon appear at http://www.math.utexas.edu/users/rusin/Bennett/ .

