ALBERT A. BENNETT CALCULUS PRIZE EXAM May 8 2018

Name:	UT EID:
Present Calculus Course:	Instructor:
Permanent Mailing Address:	
E-mail address:	
College (Natural Sciences, Engineering, etc.)	
	· · · ·

Show all work in your solutions; turn in your solutions on the sheets provided. No calculators allowed. (Suggestion: Work first on scrap paper that you don't submit; write up final solutions neatly and in order, with your name on all pages submitted.)

1. Compute (with explanation) the following limit, or show that it does not exist:

$$\lim_{x \to 0} \frac{x^2 \sin(\frac{1}{x})}{\sin(x)}$$

- **2.** Compute the derivative of $f(x) = x^{x^x}$.
- **3.** Compute $\int \frac{\sin(t) + \cos(t)}{\sqrt{2\sin(t)\cos(t)}} dt$. (*Hint*: if $u = \sin(t) \cos(t)$, what is u^2 ?)

Extra Credit: Use this idea to evaluate $\int \sqrt{\tan(t)} dt$ by first computing

$$\int \sqrt{\tan(t)} + \sqrt{\cot(t)} dt$$
 and $\int \sqrt{\tan(t)} - \sqrt{\cot(t)} dt$

4. Do these series converge or diverge? Explain.

(A)
$$\sum_{n=1}^{\infty} (-1)^n \left(1 + \frac{1}{n}\right)^{-n}$$
 (B) $\sum_{n=1}^{\infty} (-1)^n \frac{2 + \cos(\pi n)}{n}$

5. Find the volume of the intersection of the solid bounded by the cylinders $x^2 + z^2 = R^2$ and $y^2 + z^2 = R^2$

Answers will soon appear at http://www.math.utexas.edu/users/rusin/Bennett/ .