Name: \qquad
Present Calculus Course: \qquad UT EID: \qquad

Permanent Mailing Address: \qquad

E-mail address:

College (Natural Sciences, Engineering, etc.)
Show all work in your solutions; turn in your solutions on the sheets provided. No calculators allowed. (Suggestion: Work first on scrap paper that you don't submit; write up final solutions neatly and in order, with your name on all pages submitted.)

1. For which real numbers r does this limit exist?

$$
\lim _{x \rightarrow 0^{+}} x^{r} \ln (x)
$$

2. Find an antiderivative of $\cos ^{4}(x)-\sin ^{4}(x)$.
3. Do these series converge or diverge? Explain.

$$
\text { (A) } \sum_{n=1}^{\infty} \sin \left(\frac{\cos (n)}{n^{2}}\right) \quad \text { (B) } \sum_{n=1}^{\infty} \cos \left(\frac{\sin (n)}{n^{2}}\right)
$$

4. Compute $\frac{d y}{d x}$ where $y=\arcsin (2 u v), u=\cos (x)$, and $v=\sin (x)$. You may assume that $x \in[0, \pi / 4]$.
5. A 1-meter-long rod is lying at the base of a 5 -meter-tall streetlamp. The rod is oriented north-south. A runner raises the rod to a height of 2 meters and heads east at a rate of 4 meters per second, always keeping the rod perpendicular to his path, level to the ground, and at a height of 2 meters. The rod will then produce a moving shadow on the ground. How rapidly does the width of the rod's shadow increase as the runner moves eastward?

Answers will soon appear at http://www.math.utexas.edu/users/rusin/Bennett/ .

