COMPLEX ANALYSIS – HOMEWORK ASSIGNMENT 11

Due Friday, May 2, 2014, at the beginning of class.

Please write clearly, and staple your work !

1. Problem

Let $L := \{m + in \mid m, n \in \mathbb{Z}\}$, and $L^* := L \setminus \{(0, 0)\}.$

(i) Prove that

$$f(z) := \frac{1}{z^2} + \sum_{\omega \in L^*} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right)$$

defines a meromorphic function in \mathbb{C} satisfying $f(z + \omega) = f(z)$ for all $\omega \in L$.

(ii) Verify that f defines an analytic map $\mathbb{T} \to \mathbb{C}_{\infty}$, from the torus \mathbb{T} to the Riemann sphere. Determine the degree of f, and find branch points and their valencies, if there are any. Compare your results with the Riemann-Hurwitz formula.

2. Problem

Prove that an elliptic function has as many poles as zeros.

3. Problem

Prove that an elliptic function f with degree deg(f) = 2 has exactly 4 branch points, each with valency 2.

4. Problem

Let Λ be the lattice generated by the linearly independent vectors (ω_1, ω_2) , and \mathcal{P} the corresponding Weierstrass function. Prove that every meromorphic function on the torus \mathbb{C}/Λ , $f \in \mathcal{M}(\mathbb{C}/\Lambda)$, can be written in the form

$$f(z) = R(\mathcal{P}(z)) + Q(\mathcal{P}(z))\mathcal{P}'(z),$$

where R, Q are rational functions, and \mathcal{P}' is the complex derivative of \mathcal{P} . *Hints*: See next page.

HINTS FOR PROBLEM 4

First consider $f \in \mathcal{M}(\mathbb{C}/\Lambda)$ even, of degree $m \in 2\mathbb{N}$ (why is the degree even ?). Let m = 2k. Let $\mathcal{B} := \{z \in \mathbb{C}/\Lambda \mid f'(z) = 0\}$ denote the set of branch points. Assume that $w \notin f(\mathcal{B})$. Verify that f(z) = w has 2k distinct solutions $\{c_1, \dots, c_k, c'_1, \dots, c'_k\} \subset \mathbb{C}/\Lambda$ which appear in pairs satisfying $c_j + c'_j \in \Lambda$, where in particular c_j and c'_j are different. Moreover, let $u \neq w$ with $u \notin f(\mathcal{B})$, and let $\{d_j, d'_j\}_{j=1}^k \subset \mathbb{C}/\Lambda$ be the solutions of f(z) = w.

f(z) = u.

Then, compare the functions

$$g(z) := \frac{f(z) - w}{f(z) - u}$$
 and $h(z) := \prod_{j=1}^k \frac{\mathcal{P}(z) - \mathcal{P}(c_j)}{\mathcal{P}(z) - \mathcal{P}(d_j)}$.

Next, for f odd, note that f can be written as $f = f_{even} \mathcal{P}'(z)$, where $f_{even} = \frac{f}{\mathcal{P}'}$ is even.