Due Friday, May 2, 2014, at the beginning of class.

## Please write clearly, and staple your work !

## 1. Problem

Let $L:=\{m+i n \mid m, n \in \mathbb{Z}\}$, and $L^{*}:=L \backslash\{(0,0)\}$.
(i) Prove that

$$
f(z):=\frac{1}{z^{2}}+\sum_{\omega \in L^{*}}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right)
$$

defines a meromorphic function in $\mathbb{C}$ satisfying $f(z+\omega)=f(z)$ for all $\omega \in L$.
(ii) Verify that $f$ defines an analytic map $\mathbb{T} \rightarrow \mathbb{C}_{\infty}$, from the torus $\mathbb{T}$ to the Riemann sphere. Determine the degree of $f$, and find branch points and their valencies, if there are any. Compare your results with the Riemann-Hurwitz formula.

## 2. Problem

Prove that an elliptic function has as many poles as zeros.

## 3. Problem

Prove that an elliptic function $f$ with degree $\operatorname{deg}(f)=2$ has exactly 4 branch points, each with valency 2 .

## 4. Problem

Let $\Lambda$ be the lattice generated by the linearly independent vectors $\left(\omega_{1}, \omega_{2}\right)$, and $\mathcal{P}$ the corresponding Weierstrass function. Prove that every meromorphic function on the torus $\mathbb{C} / \Lambda, f \in \mathcal{M}(\mathbb{C} / \Lambda)$, can be written in the form

$$
f(z)=R(\mathcal{P}(z))+Q(\mathcal{P}(z)) \mathcal{P}^{\prime}(z),
$$

where $R, Q$ are rational functions, and $\mathcal{P}^{\prime}$ is the complex derivative of $\mathcal{P}$.
Hints: See next page.

## Hints for Problem 4

First consider $f \in \mathcal{M}(\mathbb{C} / \Lambda)$ even, of degree $m \in 2 \mathbb{N}$ (why is the degree even ?). Let $m=2 k$. Let $\mathcal{B}:=\left\{z \in \mathbb{C} / \Lambda \mid f^{\prime}(z)=0\right\}$ denote the set of branch points. Assume that $w \notin f(\mathcal{B})$. Verify that $f(z)=w$ has $2 k$ distinct solutions $\left\{c_{1}, \cdots, c_{k}, c_{1}^{\prime}, \cdots, c_{k}^{\prime}\right\} \subset \mathbb{C} / \Lambda$ which appear in pairs satisfying $c_{j}+c_{j}^{\prime} \in \Lambda$, where in particular $c_{j}$ and $c_{j}^{\prime}$ are different.

Moreover, let $u \neq w$ with $u \notin f(\mathcal{B})$, and let $\left\{d_{j}, d_{j}^{\prime}\right\}_{j=1}^{k} \subset \mathbb{C} / \Lambda$ be the solutions of $f(z)=u$.

Then, compare the functions

$$
g(z):=\frac{f(z)-w}{f(z)-u} \quad \text { and } \quad h(z):=\prod_{j=1}^{k} \frac{\mathcal{P}(z)-\mathcal{P}\left(c_{j}\right)}{\mathcal{P}(z)-\mathcal{P}\left(d_{j}\right)} .
$$

Next, for $f$ odd, note that $f$ can be written as $f=f_{\text {even }} \mathcal{P}^{\prime}(z)$, where $f_{\text {even }}=\frac{f}{\mathcal{P}^{\prime}}$ is even.

