COMPLEX ANALYSIS – HOMEWORK ASSIGNMENT 3

Due Friday, February 7, 2014, at the beginning of class.

Please write clearly, and staple your work !

1. Problem

Expand $\frac{2z+3}{z+1}$ in powers of z-1. What is the radius of convergence?

2. Problem

Assume that γ denotes the contour given by the triangle with vertices at 0, 1, and *i*, oriented in counter-clockwise direction. Determine the contour integrals

$$\oint_{\gamma} \frac{z^3 + 1}{z^2 - 4} dz \quad , \quad \oint_{\gamma} \overline{z} \, dz \, .$$

3. Problem

Let P(z) be a polynomial of degree n. Prove that P(z) = 0 has n solutions in \mathbb{C} .

4. Problem

(a) Determine the conformal maps $\mathbb{C}_{\infty} \to \mathbb{C}$.

(b) Determine the conformal maps $\mathbb{C} \to \mathbb{H}$.

5. Problem

A map g is called open (closed) if the image under g of any open (closed) set is open (closed). Recall that a function g is continuous if the pre-image of any open set under g is open.

(a) Give an example of a function $g : \mathbb{R} \to \mathbb{R}$ that is continuous but not open.

(b) Show that the angle function $\theta: S^1 \to [0, 2\pi)$ is bijective, open and closed, but not continuous.

Hint: Note that this is in the topology of $[0, 2\pi)$ as the full space and not as a subset of \mathbb{R} . Thus, the open subsets are generated by intervals of the form [0, a), $(a, 2\pi)$, and (a, b) with $0 < a < b < 2\pi$.

6. Problem

Assume that $f: \Omega \to f(\Omega)$ is holomorphic and injective on $\Omega \subset \mathbb{C}$.

(a) Prove that $f' \neq 0$ everywhere in Ω .

(b) Prove that f is an open map.

(c) Prove that $f^{-1}: f(\Omega) \to \Omega$ is holomorphic.