COMPLEX ANALYSIS - HOMEWORK ASSIGNMENT 5

Due Monday, February 24, 2014, at the beginning of class.
Please write clearly, and staple your work!

1. Problem

Assume that $f \in \mathcal{H}\left(\Omega \backslash\left\{z_{0}\right\}\right)$, and that $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=0$. Define $g(z):=\left(z-z_{0}\right) f(z)$ for $z \in \Omega \backslash\left\{z_{0}\right\}$, and $g\left(z_{0}\right):=0$. Prove that g is holomorphic in Ω.

2. Problem

Determine the Laurent series of the function $f(z)=\frac{1}{1-z}$ relative to the point $z_{0}=2$ in the region $\left\{z\left||z-2|>\frac{3}{2}\right\}\right.$.

3. Problem

Evaluate the integral

$$
\int_{0}^{2 \pi} \frac{d t}{3+2 \cos t}
$$

by converting it into a contour integral along the unit circle $\gamma(t)=e^{i t}$, and using that $2 \cos t=z+1 / z$ for $z=e^{i t}$.

4. Problem

Assume that f is holomorphic in a region Ω and satisfies the inequality $|f(z)-1|<1$ for all $z \in \Omega$. Prove that

$$
\oint_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=0
$$

for every closed C^{1}-curve in Ω.

5. Problem

Let f be a meromorphic function in \mathbb{C} with finitely many poles, located at $\left\{z_{j}\right\}_{j=1}^{J}$. Prove that

$$
\sum_{j=1}^{J} \operatorname{res}\left(f ; z_{j}\right)=\operatorname{res}(g ; 0)
$$

where $g(z):=\frac{1}{z^{2}} f\left(\frac{1}{z}\right)$. Here, $\operatorname{res}\left(f ; z_{j}\right)$ denote the residue of f at z_{j}. It is defined by $\operatorname{res}\left(f ; z_{j}\right)=a_{-1}$ if $f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{j}\right)^{n}$ is the Laurent series of f at z_{j}.

