1. Problem

Let Ω_{1} and Ω_{2} be two disjoint open subsets of the complex plane. Let $n \mapsto f_{n}$ be a sequence of analytic functions on Ω_{1}, with values in Ω_{2}. If this sequence converges pointwise to a function $f: \Omega_{1} \rightarrow \mathbb{C}$, show that f is analytic and $f\left(\Omega_{1}\right) \subset \Omega_{2}$.

2. Problem

Assume that f is meromorphic on \mathbb{C} satisfying $f(z)=f\left(-\frac{1}{\bar{z}}\right)$ for all $z \in \mathbb{C}$, and $\lim _{z \rightarrow \infty} f(z)=$ 1. Let $\gamma_{\theta}: \mathbb{R} \rightarrow \mathbb{C}, t \mapsto e^{i \theta} t$ be a contour that traces out a straight line at inclination angle θ containing the origin, and which contains no zeros or poles of f. Determine

$$
\int_{\gamma_{\theta}} \frac{f^{\prime}(z)}{f(z)} d z
$$

3. Problem

Assume that $f: \mathbb{D}^{*} \rightarrow \Omega$ is a biholomorphic map where $\mathbb{D}^{*}:=\{z \in \mathbb{C}|0<|z|<1\}$ is the punctured disc, and $\Omega \subset \mathbb{C}$ is a bounded region.
(1) Prove that f has a removable singularity at 0 .
(2) Let $g \in \mathcal{H}(\mathbb{D})$ denote the holomorphic extension of $f \in \mathcal{H}\left(\mathbb{D}^{*}\right)$. Prove that $g^{\prime}(0) \neq 0$.

4. Problem

Assume that $f \in \mathcal{H}(\mathbb{D}) \cap C(\overline{\mathbb{D}})$ (that is, holomorphic on \mathbb{D} and continuous on $\overline{\mathbb{D}}=\mathbb{D} \cup \partial \mathbb{D}$), and satisfies $|f(z)|=1$ for $|z|=1$. Moreover, assume that f vanishes nowhere inside \mathbb{D}.
(1) Prove that the function $g(z)$, defined by

$$
\begin{gathered}
g(z):=f(z) \quad \text { if } z \in \overline{\mathbb{D}}, \\
g(z):=\frac{1}{\overline{f\left(\frac{1}{\bar{z}}\right)}} \quad \text { if } z \in \mathbb{C} \backslash \overline{\mathbb{D}},
\end{gathered}
$$

is holomorphic on \mathbb{C}.
(2) Prove that f must be a constant.

5. Problem

If $\Omega \subset \mathbb{C}$ is the complement of a compact connected set containing $\pm 1 \pm i$, show that there exists an analytic function $g: \Omega \rightarrow \mathbb{C}$ such that $g(z)^{4}=z^{4}+4$.

