COMPLEX ANALYSIS - PRACTICE PROBLEMS - MARCH 7, 2014

1. Problem

Let Ω_1 and Ω_2 be two disjoint open subsets of the complex plane. Let $n \mapsto f_n$ be a sequence of analytic functions on Ω_1 , with values in Ω_2 . If this sequence converges pointwise to a function $f : \Omega_1 \to \mathbb{C}$, show that f is analytic and $f(\Omega_1) \subset \Omega_2$.

2. Problem

Assume that f is meromorphic on \mathbb{C} satisfying $f(z) = f(-\frac{1}{\overline{z}})$ for all $z \in \mathbb{C}$, and $\lim_{z\to\infty} f(z) = 1$. Let $\gamma_{\theta} : \mathbb{R} \to \mathbb{C}, t \mapsto e^{i\theta}t$ be a contour that traces out a straight line at inclination angle θ containing the origin, and which contains no zeros or poles of f. Determine

$$\int_{\gamma_{\theta}} \frac{f'(z)}{f(z)} dz$$

3. Problem

Assume that $f : \mathbb{D}^* \to \Omega$ is a biholomorphic map where $\mathbb{D}^* := \{z \in \mathbb{C} \mid 0 < |z| < 1\}$ is the punctured disc, and $\Omega \subset \mathbb{C}$ is a bounded region.

- (1) Prove that f has a removable singularity at 0.
- (2) Let $g \in \mathcal{H}(\mathbb{D})$ denote the holomorphic extension of $f \in \mathcal{H}(\mathbb{D}^*)$. Prove that $g'(0) \neq 0$.

4. Problem

Assume that $f \in \mathcal{H}(\mathbb{D}) \cap C(\overline{\mathbb{D}})$ (that is, holomorphic on \mathbb{D} and continuous on $\overline{\mathbb{D}} = \mathbb{D} \cup \partial \mathbb{D}$), and satisfies |f(z)| = 1 for |z| = 1. Moreover, assume that f vanishes nowhere inside \mathbb{D} .

(1) Prove that the function g(z), defined by

$$\begin{split} g(z) &:= f(z) \quad \text{if } z \in \overline{\mathbb{D}} \ , \\ g(z) &:= \frac{1}{\overline{f(\frac{1}{\overline{z}})}} \quad \text{if } z \in \mathbb{C} \setminus \overline{\mathbb{D}} \ , \end{split}$$

is holomorphic on \mathbb{C} .

(2) Prove that f must be a constant.

5. Problem

If $\Omega \subset \mathbb{C}$ is the complement of a compact connected set containing $\pm 1 \pm i$, show that there exists an analytic function $g: \Omega \to \mathbb{C}$ such that $g(z)^4 = z^4 + 4$.